

DFSORT IBM

Getting Started with DFSORT
Release 14

 SC26-4109-08

DFSORT IBM

Getting Started with DFSORT
Release 14

 SC26-4109-08

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page vii.

Ninth Edition (September 1998)

This edition replaces and makes obsolete the previous edition, SC26-4109-07. The technical changes for this edition are summarized
under “Summary of Changes,” and are indicated by a vertical bar to the left of a change.

This edition applies to Release 14 of DFSORT (5740-SM1) and to any subsequent releases until otherwise indicated in new editions
or technical newsletters. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your comments to:

International Business Machines Corporation
RCF Processing Department

 G26/M86 050
5600 Cottle Road
SAN JOSE, CA 95193-0001

 U.S.A.

Or, you can send us comments about this book electronically:

� IBMLink from US and IBM Network: STARPUBS at SJEVM5
� IBMLink from Canada: STARPUBS at TORIBM
� IBM Mail Exchange: USIB3VVD at IBMMAIL
� Internet: starpubs@sjevm5.vnet.ibm.com or, starpubs at sjevm5.vnet.ibm.com
� Fax (US): 1-800-426-6209

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1983, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vii
| Programming Interface Information . vii

Trademarks . vii

Preface . ix
About This Book . ix
DFSORT Publications . ix

DFSORT Library Softcopy Information . x
Related Publications . x
Referenced Publications . x

Summary of Changes . xiii
Ninth Edition, September 1998 . xiii

New Programming Support for Release 14 xiii
New Programming Support for Release 13 (PTFs after April, 1996) xvi
New Programming Support for Release 13 (PTFs - April, 1996) xvi

Part 1. Introduction . 1

Chapter 1. What is DFSORT? . 3
| DFSORT on the World Wide Web . 3
| DFSORT FTP Site . 3

Sorting Data Sets . 3
Merging Data Sets . 4
Copying Data Sets . 5
What Else Can You Do with DFSORT? . 5
Creating and Running DFSORT Jobs . 5

Writing Jobs . 6
Creating Jobs Interactively . 6
Running Jobs . 6

Using the Sample Bookstore Data Sets . 6
Creating Your Sample Input and Output Data Sets 8

Part 2. Learning to Write JCL and DFSORT Control Statements 9

Chapter 2. Sorting, Merging, and Copying Data Sets 11
Sorting Data Sets . 11

Sorting by Multiple Fields . 13
Continuing a Statement . 14
Sorting Data Sets with the JCL EXEC Statement 15

Merging Data Sets . 16
Writing the MERGE Control Statement . 17
Merging Data Sets with the JCL EXEC Statement 18

Copying Data Sets . 19
Specifying COPY on the SORT, MERGE, or OPTION Statement 19
Copying Data Sets with the JCL EXEC Statement 20

Chapter 3. Tailoring the Input Data Set with INCLUDE and OMIT 21
Writing the INCLUDE Statement . 21

 Copyright IBM Corp. 1983, 1998 iii

Writing the OMIT Statement . 24
Allowable Comparisons for INCLUDE and OMIT 25
Writing Constants . 26

Chapter 4. Summing Records . 27
Writing the SUM Statement . 27
Suppressing Records with Duplicate Control Fields 29
Handling Overflow . 29

Chapter 5. Reformatting Records . 31
Reformatting Records After Sorting . 31
Reordering Fields to Reserve Space . 32
Inserting Binary Zeros . 33
Inserting Blanks . 33
Inserting Constants . 34

Character Strings . 35
Hexadecimal Strings . 35
Setting Up the Report Format . 35

Reformatting Records Before Sorting . 37
Using Other Statements with INREC . 38
Preventing Overflow When Summing Values . 40

Chapter 6. Creating Multiple Output Data Sets and Reports 41
Creating Multiple Copies . 42
Creating Multiple Output Data Sets with Unique Content 43
Creating Reports: ICETOOL vs OUTFIL . 45
Using OUTFIL to Create Reports . 45

Using the FNAMES and LINES Parameters 49
Using the HEADER2 Parameter . 50
Using the OUTREC Parameter . 52
Using the TRAILER1 Parameter . 54

Chapter 7. Calling DFSORT from a Program 57
Passing Control Statements . 57
Calling DFSORT from a COBOL Program . 57

Sorting Records . 57
Merging Records . 60

Sorting with COBOL FASTSRT . 63
Calling DFSORT from a PL/I Program . 63

Chapter 8. Overriding Installation Defaults 65
Specifying PARM Parameters on a JCL EXEC Statement 65
Writing an OPTION Control Statement . 65
Specifying DFSPARM Parameters . 66

Chapter 9. Using DFSORT Efficiently . 67
Be Generous with Main Storage . 67
Use High–Speed DASD or Hiperspace . 67
Eliminate Unnecessary Fields with INREC . 68
Eliminate Unnecessary Records with INCLUDE or OMIT 68
Reduce File Size with STOPAFT and SKIPREC 68
Consolidate Records with SUM . 68
Create Multiple Output Data Sets with OUTFIL 69
Run DFSORT with JCL . 69

iv Getting Started with DFSORT R14

Use FASTSRT with COBOL . 69
Avoid Options That Might Degrade Performance 69

Part 3. Learning to Use ICETOOL . 71

Chapter 10. Using the ICETOOL Utility . 73
ICETOOL Operators . 73
Input Data Sets . 74
Creating an ICETOOL Job . 75

Writing Required JCL Statements . 75
ICETOOL Comment and Blank Statements . 76
Printing Statistics For Numeric Fields . 77

Continuing an Operator Statement . 78
Statistics For Record Lengths . 79

Creating Identical Sorted Data Sets . 79
Creating Different Subsets of a Sorted Data Set 82
Creating Multiple Unsorted Data Sets . 84
Counting Values in a Range . 85
Printing Simple Reports . 87
Printing Tailored Reports . 88
Using Formatting Items . 90

Edit Masks . 90
Division . 92
Leading, Floating and Trailing Characters . 92

Printing Sectioned Reports . 93
Printing How Many Times Fields Occur . 96
Selecting Records by Field Occurrences . 97
Complete ICETOOL Job and TOOLMSG Output 98

| Part 4. Learning to Use Symbols . 103

| Chapter 11. Defining and Using Symbols 105
| Creating the SYMNAMES Data Set . 105
| Defining Symbols for Fields . 105
| Using Symbols for Fields in DFSORT Statements 107
| Using Symbols for Fields in ICETOOL Operators 108
| Defining and Using Symbols for Constants . 109

Part 5. Appendixes . 113

Appendix A. Using the DFSORT Sample Data Sets 115

Appendix B. The Sample Bookstore Data Sets 117

Appendix C. Processing Order of Control Statements 121

Summary of Changes . 123
Release 13 . 123

New Programming Support for Release 13 123
New Programming Support for Release 12 (PTFs) 125
New Device Support for Release 12 (PTFs) 125

 Contents v

Index . 127

vi Getting Started with DFSORT R14

 Notices

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's intellec-
tual property rights or other legally protectible rights may be used instead of the
IBM product, program, or service. Evaluation and verification of operation in con-
junction with other products, programs, or services, except those expressly desig-
nated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594, U.S.A.

| Programming Interface Information
| This book primarily documents information that is NOT intended to be used as a
| Programming Interface of DFSORT.

| This book also documents intended Programming Interfaces that allow the cus-
| tomer to write programs to obtain the services of DFSORT. This information is iden-
| tified where it occurs, either by an introductory statement to a chapter or section or
| by the following marking:

|
Programming Interface information

| Programming Interface information

| End of Programming Interface information

 Trademarks
The following terms are trademarks or service marks of the IBM Corporation in the
United States or other countries or both:

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of other companies.

DFSMS/MVS
DFSORT
Hipersorting
Hiperspace

IBM
MVS/ESA
OS/390
RACF

 Copyright IBM Corp. 1983, 1998 vii

 Notices

viii Getting Started with DFSORT R14

 DFSORT Publications

 Preface

Getting Started with DFSORT is a user’s book and tutorial for DFSORT (Data
Facility Sort). You should read it if you are new to DFSORT Licensed Program
5740-SM1 and need to learn the basics of using DFSORT to process data sets.
Experienced DFSORT users can use this book as a general guide to DFSORT.

The chapters in this book assume that you have used job control language (JCL)
and understand how to work with data sets. You should also know what data sets
are available at your site.

About This Book
This book gives you all of the information and instructions you need to build and
submit DFSORT jobs. You can use DFSORT by writing JCL and DFSORT program
control statements, or by entering values on interactive, full-screen panels. This
book describes the first method of creating DFSORT jobs. The second method is
detailed in DFSORT Panels Guide.

New users should work through Getting Started from cover to cover. Each task
explained in this book builds on knowledge gained in previous tasks. The Table of
Contents lists the main tasks, and summaries are included in the chapters. If you
have previous experience with these tasks, you can proceed from here directly to
the tutorials that begin in Chapter 2, “Sorting, Merging, and Copying Data Sets” on
page 11.

Chapter 1, What is DFSORT? is an overview of the basic principles of sorting,
merging, and copying, and explains how to create and use the sample bookstore
data sets for the examples in this book.

Chapters 2-9 show you how to create and process DFSORT jobs by writing JCL
and DFSORT program control statements to sort, merge, and copy data sets.
These chapters also detail DFSORT's methods for arranging data sets and gener-
ating reports.

Chapter 10 shows you how to create and process ICETOOL jobs by writing JCL
and ICETOOL statements. ICETOOL is a multipurpose DFSORT utility that uses
the capabilities of DFSORT to perform multiple operations on one or more data
sets in a single step.

| Chapter 11 shows you how to define symbols for fields and constants and use
| them in your DFSORT control statements and ICETOOL operators.

Several appendixes and an index follow the chapters.

 DFSORT Publications
Getting Started with DFSORT is a part of a more extensive DFSORT library. The
additional books in the library are listed below. You can order a complete set of
DFSORT publications with the order number SBOF-1243, except for DFSORT
Licensed Program Specifications (GC33-4032), which must be ordered separately.

 Copyright IBM Corp. 1983, 1998 ix

Task Publication Title Order Number

Application Programming DFSORT Application Programming Guide Release 14 SC33-4035

Diagnosing Failures and
Interpreting Messages

DFSORT Messages, Codes and Diagnosis Guide Release 14 SC26-7050

Planning for and Cus-
tomizing DFSORT

DFSORT Installation and Customization Release 14 SC33-4034

Quick Reference DFSORT Reference Summary Release 14 SX33-8001

Tuning DFSORT DFSORT Tuning Guide Release 14 SC26-3111

Learning to Use
DFSORT Panels

DFSORT Panels Guide GC26-7037

DFSORT Library Softcopy Information
The DFSORT library is available on CD-ROM.

Order Number Title

SK2T-0710 IBM Online Library Omnibus Edition MVS Collection

SK2T-6700 IBM Online Library Omnibus Edition OS/390 Collection

 Related Publications
For up-to-date descriptions of all of the books that support OS/390, refer to the
OS/390 Information Roadmap, GC28–1727.

In the course of learning how to use DFSORT, you might also want to refer to the
publications listed in the table below.

Short Title Publication Order Number

JCL Reference MVS/ESA JCL Reference (for MVS/ESA SP Version 5) GC28-1479

MVS/ESA JCL Reference (for MVS/ESA SP Version 4) GC28-1654

JCL User's Guide MVS/ESA JCL User's Guide (for MVS/ESA SP Version 5) GC28-1473

MVS/ESA JCL User's Guide (for MVS/ESA SP Version 4) GC28-1653

 Referenced Publications
Within the text of this document, references are made to the following publications:

Short Title Publication Order Number

Application Programming
Guide

DFSORT Application Programming Guide Release
14

SC33-4035

Panels Guide DFSORT Panels Guide GC26-7037

Messages, Codes and
Diagnosis

DFSORT Messages, Codes and Diagnosis Guide
Release 14

SC26-7050

x Getting Started with DFSORT R14

A more comprehensive list of related publications appears in DFSORT Application
Programming Guide.

For more information on using DFSORT with COBOL or PL/I, see the Program-
mer's Guide describing the compiler version available at your site.

 Preface xi

xii Getting Started with DFSORT R14

Summary of Changes

Ninth Edition, September 1998

New Programming Support for Release 14

Symbols for Fields and Constants
DFSORT now provides a simple and flexible method for using symbols in DFSORT
and ICETOOL statements. You can define and use a symbol for any field or con-
stant that is recognized in a DFSORT control statement or ICETOOL operator. This
makes it easy to create and reuse collections of symbols (that is, mappings) for
your frequently used data.

In addition, you can obtain and use collections of DFSORT symbols created specif-
ically for data associated with other products (for example, RACF, DFSMSrmm and
DCOLLECT) or by your site.

DFSORT symbols can increase your productivity by automatically providing the
positions, lengths and formats of the fields and the literals, numbers, and bit flags
of the constants, associated with the particular records you are processing with
DFSORT or ICETOOL.

Improvements in Performance, Capacity and Storage Usage
Blockset copy and merge applications can now use storage above 16MB virtual,
providing improved performance and virtual storage constraint relief.

Blockset copy and merge modules will now reside above 16MB virtual, providing
virtual storage constraint relief.

DFSORT can now handle a significantly larger number of INCLUDE and OMIT con-
ditions.

DFSORT can now handle a significantly larger number of SUM fields.

The upper limit for the number of JCL and dynamically allocated work data sets
that can be specified and used by DFSORT's Blockset technique has been raised
from 100 to 255. The use of more work data sets increases the maximum amount
of data DFSORT can process in a single sort application. Any valid ddname of the
form SORTWKdd or SORTWKd can now be used for DASD work data sets (for
example, SORTWK01, SORTWKC3, SORTWK2, SORTWK#5, SORTWKA,
SORTWKXY and so on).

The upper limit for the number of input data sets that can be specified and used for
a Blockset merge application has been raised from 16 to 100. The use of more
merge input data sets increases the maximum amount of data DFSORT can
process in a single merge application.

 Copyright IBM Corp. 1983, 1998 xiii

Time-of-Day Option Controls
New time-of-day installation modules (ICETD1-4) allow different sets of installation
defaults to be used, based on the day and time DFSORT applications run. Each
environment installation module (ICEAM1-4) can enable one or more time-of-day
installation modules. This capability allows new levels of control for installation
defaults. For example, larger storage, hiperspace and data space limits could be
used only for batch program-invoked DFSORT applications that run off-shift during
the week, and all weekend.

 Repackaging
The product has been repackaged to simplify installation and customization:

� IBM's DFSORT, DFSMSdfp, and MVS/DFP teams have simplified the process
of replacing IEBGENER with ICEGENER. You now only need to apply a
DFSMS or DFP PTF that supplies an alias of "IEBGENR" for IEBGENER and
place ICEGENER with an alias of "IEBGENER" ahead of IEBGENER in the
system's search order for programs.

� The number of FMIDs has been reduced from 10 to 3.

� The number of libraries required to install DFSORT has been reduced from 40
to 26.

� DFSORT R14 now supports a single installation of the product for both resident
and nonresident features. This allows you to decide how to use DFSORT inde-
pendent of the installation method, thus reducing the number of decisions you
have to make at installation time.

� All FMIDs in DFSORT R14 can be installed together, including the FMIDs for
both English and Japanese messages and panels.

OUTFIL Processing Enhancements
OUTFIL now supports creation of multiple output records using the fields of the
input record. This allows you to split each record into pieces, include a field in more
than one record, include different fields in different records, and more.

OUTFIL now supports processing of variable-length input records which are too
short to contain all specified OUTFIL OUTREC fields. OUTFIL's new VLFILL=byte
operand can be used to replace missing bytes in OUTFIL OUTREC fields with the
specified fill byte so the filled fields can be processed.

 ICETOOL Enhancement
A new DISCARD(savedd) operand of ICETOOL's SELECT operator allows you to
save the records that are not selected, in the savedd data set. Thus, in one pass,
you can create an outdd data set with the records that meet your specified criteria,
and a savedd data set with the records that do not meet your specified criteria.
DISCARD(savedd) can be used to save the records discarded by ALLDUPS,
NODUPS, HIGHER(x), LOWER(y), EQUAL(v), FIRST or LAST.

Installation and Run-Time Option Enhancements
A new p% value for the EXPRES, EXPOLD, and EXPMAX installation options and
the HIPRMAX installation and run-time options is now available. p% can be used
to vary the limit DFSORT calculates for the corresponding option as a percentage
of the configured expanded storage on the system at run time. If the configured
expanded storage on a system changes, p% will cause a corresponding change in
the run-time limit calculated for the corresponding option. When sharing DFSORT

xiv Getting Started with DFSORT R14

installation options between systems, such as in a sysplex, p% can be used to
tailor the limit DFSORT calculates for the corresponding option to the system on
which the application runs.

A new SPANINC installation and run-time option allows you to specify what you
want DFSORT to do if it detects incomplete spanned records. This gives you
control over the action (continue by eliminating incomplete spanned records and
recovering valid records, or terminate), type of message (informational or error) and
return code (0, 4 or 16) for incomplete spanned records.

A new OVFLO installation and run-time option allows you to specify what you want
DFSORT to do when BI, FI, PD or ZD summary fields overflow. This gives you
control over the action (continue or terminate), type of message (informational or
error) and return code (0, 4 or 16) for summary overflow.

A new PAD installation and run-time option allows you to specify what you want
DFSORT to do when the SORTOUT LRECL is larger than the SORTIN/SORTINnn
LRECL. This gives you control over the action (continue or terminate), type of
message (informational or error) and return code (0, 4 or 16) for LRECL padding.

A new TRUNC installation and run-time option allows you to specify what you want
DFSORT to do when the SORTOUT LRECL is smaller than the
SORTIN/SORTINnn LRECL. This gives you control over the action (continue or ter-
minate), type of message (informational or error) and return code (0, 4 or 16) for
LRECL truncation.

The IBM-supplied default for ICEMAC option DSA has been changed from 16MB to
32MB.

The IBM-supplied default for ICEMAC option GENER has been changed from
IEBGENER to IEBGENR.

The maximum value for ICEMAC option OVERRGN has been changed from 64KB
to 16128KB.

 Other Enhancements
New messages ICE178I and ICE179A provide information about reallocation of VIO
work data sets.

The option-in-effect messages (ICE127I-ICE133I) are now printed for Blockset copy
and merge applications.

The user exit address constant can now be passed to E32 user exits for Blockset
merge applications.

Null segments in variable spanned input records are now processed by DFSORT
and no longer result in termination. A null segment means that there are no more
segments in the block.

 Summary of Changes xv

OS/390 and MVS/ESA Only
DFSORT Release 14 only supports the OS/390 and MVS/ESA environments.
MVS/XA and VIRTDSP processing for MVS/XA are no longer supported.

New Programming Support for Release 13 (PTFs after April, 1996)

Additional Year 2000 Features
A new Y2S format can order and transform two-digit character or zoned decimal
year data according to the century window, while handling binary zeros, blanks and
binary ones in the year field as special indicators.

A new Y2B format can order and transform two-digit binary year data according to
the century window.

FREE=CLOSE support for DFSPARM makes it possible to override the SORT
statements generated by multiple COBOL SORT verbs in the same COBOL
program.

 OS/390 Registration
With OS/390 R2 and above, a check is performed to ensure that the DFSORT
product is licensed for use, either as a feature of OS/390 or as a separate program
product.

New Programming Support for Release 13 (PTFs - April, 1996)

Year 2000 Features
New Y2C, Y2Z, Y2P and Y2D formats, in conjunction with a new Y2PAST installa-
tion and run-time option, allow you to handle two-digit year data in the following
ways:

� Set the appropriate century window for your applications (for example,
1915-2014 or 1950-2049).

� Order two-digit character, zoned decimal, packed decimal or decimal year data
according to the century window using Blockset SORT or MERGE (for example,
order 96 representing 1996 before 00 representing 2000 in ascending
sequence, or order 00 before 96 in descending sequence).

� Transform two-digit character, zoned decimal, packed decimal or decimal year
data to four-digit character year data according to the century window using
OUTFIL OUTREC (for example, transform 96 to 1996 and 00 to 2000).

A new PD0 format allows you to order and transform parts of packed decimal fields
(for example, month and day in date fields) using SORT, MERGE and OUTFIL.

Performance Improvements for FLR and VLR Blockset Sorts
Performance improvements for FLR and VLR Blockset sorts include the following:

� Dataspace sorting can now be used for variable-length record sort applications.

� DFSORT data processing methods have been improved.

� Dynamic storage adjustment is a new feature that allows DFSORT to automat-
ically use more storage than the TMAXLIM value for a Blockset sort application
if DFSORT determines that doing so should improve performance. New installa-

xvi Getting Started with DFSORT R14

tion option DSA=n has been added to enable you to specify the dynamic
storage adjustment limit.

� The upper limit for the amount of main storage that can be specified and used
by DFSORT has been raised from 32M to 2000M. Specifying more main
storage can provide the following benefits:

– It allows DFSORT to sort very large data sets more efficiently.

– It allows more sort applications to be done entirely in main storage, elimi-
nating the need for intermediate work space and greatly reducing the EXCP
counts for those applications.

– It increases the maximum amount of data DFSORT can process in a single
sort application.

� New installation option IOMAXBF=n has been added to enable you to specify
the upper limit for the amount of storage to be used for SORTIN and
SORTOUT data set buffers, which in turn limits the amount of data that can be
transferred in a single I/O operation.

� The upper limit for the number of JCL and dynamically allocated work data sets
that can be specified and used by DFSORT's Blockset technique has been
raised from 32 to 100. The use of more work data sets increases the maximum
amount of data DFSORT can process in a single sort application.

� Changes to the DFSORT SVC provide caching selection enhancements that
improve storage control caching performance, especially for SORTIN and
SORTOUT devices.

� DFSORT can now use NOEQUALS for VLR Blockset applications if
EQUALS=NO is specified at installation or NOEQUALS is specified at run-time.
The use of NOEQUALS can improve performance and is recommended for
applications for which the order of records that collate identically need not be
preserved from input to output. To minimize migration concerns, the
IBM-supplied default for the ICEMAC EQUALS option is the new value
VLBLKSET, which is equivalent to EQUALS=YES for VLR Blockset applications
and to EQUALS=NO for all other applications.

Floating Point for SUM
FL format can now be used with the SUM control statement for short (4-byte), long
(8-byte) and extended (16-byte) floating point data.

 Security Improvements
Changes to the DFSORT SVC provide security improvements that bring DFSORT
up to B1 security standards.

EXCPVR Processing Removed
To enhance DFSORT's protection of system integrity, EXCPVR processing will no
longer be used. EXCPVR parameter values will continue to be accepted, but will
have no effect on DFSORT processing. In general, the performance improvements
provided by EXCPVR processing have diminished with newer technologies and will
be more than offset by the performance improvements listed above. Please ignore
any references to EXCPVR in this book; all such references will be deleted when
the book is updated.

 Summary of Changes xvii

New Device Support for Release 13 (PTFs)
The IBM 3590 Magnetic Tape Subsystem is supported for input, output and work
data sets.

xviii Getting Started with DFSORT R14

 Part 1. Introduction

Chapter 1. What is DFSORT? . 3
| DFSORT on the World Wide Web . 3
| DFSORT FTP Site . 3

Sorting Data Sets . 3
Merging Data Sets . 4
Copying Data Sets . 5
What Else Can You Do with DFSORT? . 5
Creating and Running DFSORT Jobs . 5

Writing Jobs . 6
Creating Jobs Interactively . 6
Running Jobs . 6

Using the Sample Bookstore Data Sets . 6
Creating Your Sample Input and Output Data Sets 8

 Copyright IBM Corp. 1983, 1998 1

2 Getting Started with DFSORT R14

 What is DFSORT?

Chapter 1. What is DFSORT?

DFSORT is a member of the IBM Data Facility family of products. The DFSORT
licensed program is a high-performance data arranger developed by IBM for
OS/390 and MVS/ESA users.

With DFSORT, you can sort, merge, and copy data sets. You can use DFSORT to
do simple tasks such as alphabetizing a list of names, or you can use it to aid
complex tasks such as taking inventory or running a billing system. You can also
use DFSORT’s record-level editing capability to perform data management tasks.

The information you manipulate with DFSORT is contained in data sets. The term
data set refers to a file that contains one or more records. Any named group of
records is called a data set. The terms data set and file are synonymous; however,
for the sake of consistency, this book refers only to data sets.

A data set contains the information that you want to sort, copy, or merge. For most
of the processing done by DFSORT, the whole data set is affected. However,
some forms of DFSORT processing involve only certain individual records in that
data set.

Data sets can be cataloged, which permits the data set to be referred to by name
without specifying where the data set is stored. A cataloged data set should not be
confused with a cataloged procedure. A cataloged procedure is a named collection
of JCL stored in a data set, and a cataloged data set is a data set whose name is
recorded by the system.

Throughout this book, the term record refers to a collection of related information
used as a unit, such as one item in a data base or personnel data about one
member of a department. The term field refers to a specific portion of a record used
for a particular category of data. A field is the smallest addressable unit of data in a
data set.

| DFSORT on the World Wide Web
| For articles, online books, news, tips, techniques, examples, and more, visit the
| DFSORT/MVS home page at URL:

| http://www.ibm.com/storage/dfsort/

| DFSORT FTP Site
| You can obtain DFSORT articles and examples via anonymous FTP to:

| index.storsys.ibm.com/dfsort/mvs/

Sorting Data Sets
You can use DFSORT to rearrange the records in your data sets. Sorting is
arranging records in either ascending or descending order within a file. Table 1 on
page 4 shows a sample data set of names, first sorted in ascending order, then in
descending order.

 Copyright IBM Corp. 1983, 1998 3

 What is DFSORT?

The fields in the records can be in any of these formats: EBCDIC character,
decimal, or binary. All of the examples in this book use the EBCDIC formatting
sequence (the standard DFSORT collating sequence).

You can sort data in several different formats. Table 2 shows the most common
data formats and the codes you use to specify them.

Refer to Application Programming Guide for complete details of the available
formats.

Table 1. DFSORT Arranges Information in Ascending and Descending Order

Unsorted
Data Set

Sorted
Ascending

Sorted
Descending

Andy
Edward
Carol
Dan
Betty

Andy
Betty
Carol
Dan
Edward

Edward
Dan
Carol
Betty
Andy

Table 2. Data Format Codes

Data Format Code

EBCDIC (Character)
Binary (Numeric)
Zoned Decimal (Numeric)
Packed Decimal (Numeric)

CH
BI
ZD
PD

Merging Data Sets
You can also use DFSORT to merge data sets. DFSORT merges data sets by
combining two or more files of sorted records to form a single data set of sorted
records.

The data sets you merge must be previously sorted into the same order (ascending
or descending).

Table 3. DFSORT Merges Two Data Sets into One Data Set

Data Set 1 Data Set 2 Merged Data Set

Andy
Betty
Carol
Dan
Edward

Amy
Chris
Sue

Amy
Andy
Betty
Carol
Chris
Dan
Edward
Sue

4 Getting Started with DFSORT R14

 What is DFSORT?

Copying Data Sets
DFSORT can also copy data sets without any sorting or merging taking place. You
copy data sets in much the same way that you sort or merge them.

What Else Can You Do with DFSORT?
While sorting, merging, or copying data sets, you can also:

� Select a subset of records from an input data set. You can include or omit
records that meet specified criteria. For example, when sorting an input data
set containing records of course books from many different school departments,
you can sort the books for only one department.

� Reformat records, add or delete fields, and insert blanks, constants, or binary
zeros. For example, you can create an output data set that contains only
certain fields from the input data set arranged differently.

� Sum the values in selected records while sorting or merging (but not while
copying). In the example of a data set containing records of course books, you
can use DFSORT to add up the dollar amounts of books for one school depart-
ment.

� Create multiple output data sets and reports from a single pass over an input
data set. For example, you can create a different output data set for the
records of each department.

� Sort, merge, include or omit records according to the collating rules defined in a
selected locale.

� Alter the collating sequence when sorting or merging records (but not while
copying). For example, you can have the lowercase letters collate after the
uppercase letters.

� Sort, merge, or copy Japanese data if the IBM Double Byte Character Set
Ordering Support (DBCS Ordering) (5665-360 Licensed Program, Release 2.0
or an equivalent product) is used with DFSORT to process the records.

Creating and Running DFSORT Jobs
Processing data sets with DFSORT involves two steps:

1. Creating a DFSORT job
2. Running a DFSORT job

You can run a DFSORT job by invoking processing in a number of ways:

� With a JCL EXEC statement, using the name of the program or the name of
the cataloged procedure

� With interactive panels supported under ISPF and ISMF
� Within programs written in COBOL, PL/I, or basic Assembler language

In this book, the phrase JCL-invoked means that the DFSORT program is initiated
by a JCL EXEC statement. The phrase dynamically invoked means that the
DFSORT program is initiated from another program. DFSORT Panels jobs are
considered JCL-invoked. When you create a job interactively, DFSORT Panels sup-
plies the JCL from the information you enter.

 Chapter 1. What is DFSORT? 5

 What is DFSORT?

 Writing Jobs
You can use DFSORT by writing JCL and DFSORT control statements no matter
how your site has installed DFSORT. Part 1 contains instructions on writing the JCL
EXEC and DFSORT program control statements.

Unless you use DFSORT Panels to prepare and submit your job, you must prepare
JCL statements and DFSORT program control statements to invoke DFSORT proc-
essing. JCL statements are processed by your operating system. They describe
your data sets to the operating system, and initiate DFSORT processing. DFSORT
program control statements are processed by DFSORT. They describe and initiate
the processing you want to do.

Creating Jobs Interactively
If your site has installed DFSORT Panels, you can perform DFSORT tasks with
Interactive System Productivity Facility (ISPF) panels. For instructions on using
DFSORT Panels, see Panels Guide.

DFSORT Panels is a productivity tool. With the panels, you can work in an online
environment. You can concentrate on the sort, merge, or copy tasks, instead of on
writing the correct JCL and DFSORT program control syntax. The panels automat-
ically generate the DFSORT control statements and JCL statements from the infor-
mation you enter as you go through the panels. Also, while using DFSORT Panels,
you can get immediate answers to your questions online by using the HELP facility.

 Running Jobs
You can run DFSORT jobs directly with a JCL EXEC statement. Or, you can call
DFSORT from a COBOL, Assembler, or PL/I program.

Using the Sample Bookstore Data Sets
Before you begin, turn to Appendix A, “Using the DFSORT Sample Data Sets” on
page 115. Many of the examples in this book refer to the sample bookstore data
sets as the input data sets, so you should become familiar with them. The input
data sets contain the data that you want arranged or sorted. You must specify an
input data set for every DFSORT job you run. The sample bookstore data sets are
input data sets named SORT.SAMPIN and SORT.SAMPADD .

Each record in the bookstore data sets has 12 fields (book title, author’s last name,
and so on). A record can be represented by one horizontal row on the page. A field
can be represented by one vertical column on the page.

To sort a data set, you choose one or more fields that you want to use to order the
records (arrange in ascending or descending order). These fields are called control
fields (or, in COBOL, keys).

As you work through the exercises on the following pages, remember that each
entire record is sorted, not just the control field. However, for the sake of simplicity,
the figures in the text show only the control fields being discussed. The sorted
records actually contain all the fields, but one page is not wide enough to show
them. Appendix A, Using the DFSORT Sample Data Sets, is printed to show all the
fields in each record. It is also arranged with headings and numbers that show the
byte positions of each field. The numeric fields are in binary format (see Table 2

6 Getting Started with DFSORT R14

 What is DFSORT?

on page 4) and therefore will not appear on most terminals as they do in this book.
The methods used to arrange and view the data are explained in the chapters on
DFSORT functions that follow.

Table 4 shows an example of sorted fields. Notice the line of numbers above the
sorted fields. These numbers represent the byte positions of those fields. You use
byte positions to identify fields to DFSORT. The examples show the byte positions
to help you while you are learning to use DFSORT. The byte positions do not actu-
ally appear in any of your processed data sets.

In Table 4, the first two records, which show nothing in the course department
fields, are general purpose books not required for a particular course. For this
example, the control field is the Course Department field.

Also notice that records in Table 4 with equally collating control fields (in this case,
the same department) appear in their original order. For example, within the Com-
puter Science department (COMP), the title Video Game Design still appears
before Computers: An Introduction.

You can control whether records with equally collating control fields appear in their
original order or whether DFSORT orders them randomly. The system programmer
sets defaults at installation time that you can change with some DFSORT options at
run time. The examples in this book assume that the default is for records with
equally collating control fields to appear in their original order.

Note: The examples used in this book are for fixed-length records only. For infor-
mation on processing variable-length records, see Application Programming
Guide.

Table 4. Sample Bookstore Data Set Sorted by Course Department in Ascending Order

Book Title

Course
Depart-
ment Price

1 75 110 114 170 173

LIVING WELL ON A SMALL BUDGET
PICK'S POCKET DICTIONARY
INTRODUCTION TO BIOLOGY
SUPPLYING THE DEMAND
STRATEGIC MARKETING
COMPUTER LANGUAGES
VIDEO GAME DESIGN
COMPUTERS: AN INTRODUCTION
NUMBERING SYSTEMS
SYSTEM PROGRAMMING
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
EDITING SOFTWARE MANUALS
MODERN ANTHOLOGY OF WOMEN POETS
THE COMPLETE PROOFREADER
SHORT STORIES AND TALL TALES
THE INDUSTRIAL REVOLUTION
EIGHTEENTH CENTURY EUROPE
CRISIS OF THE MIDDLE AGES
INTRODUCTION TO PSYCHOLOGY
ADVANCED TOPICS IN PSYCHOANALYSIS

BIOL
BUSIN
BUSIN
COMP
COMP
COMP
COMP
COMP
ENGL
ENGL
ENGL
ENGL
ENGL
HIST
HIST
HIST
PSYCH
PSYCH

 9900
 295
 2350
 1925
 2350
 2600
 2199
 1899
 360
 3195
 595
 1450
 450
 625
 1520
 795
 1790
 1200
 2200
 2600

 Chapter 1. What is DFSORT? 7

 What is DFSORT?

Creating Your Sample Input and Output Data Sets
The sample bookstore data sets are the input data sets you will use for most of the
examples in this book. Your system programmer created these data sets when veri-
fying the DFSORT Panels installation. If this data set is no longer available, ask
your system programmer to run the sample job, ICEDATA, to create the sample
data sets, SORT.SAMPIN, SORT.SAMPOUT, SORT.SAMPADD, and
SORT.BRANCH, which are used in many of the examples in this book. You must
copy SORT.SAMPIN, SORT.SAMPOUT, SORT.SAMPADD, and SORT.BRANCH to
your user ID before trying the examples that use them in this book.

For information on how to copy the sample data sets to your user ID, see
Appendix B, “The Sample Bookstore Data Sets” on page 117.

Note: Some of the examples use data sets other than SORT.SAMPIN,
SORT.SAMPOUT, SORT.SAMPADD, and SORT.BRANCH. You can either
create data sets from scratch to match the ones used in the text, or else
perform a similar exercise on data sets you already have.

 Summary

So far in Getting Started you covered the following concepts:

� You can sort, copy, or merge data sets using DFSORT.

� You can either use DFSORT Panels or write the JCL EXEC and DFSORT
program control statements to create and process DFSORT jobs.

� You can run DFSORT jobs directly or call DFSORT from a program.

In addition, this chapter covered how to use and read the sample bookstore
data sets provided with DFSORT, and how to use the sample input and output
data sets. Now continue with tutorials on how to write DFSORT control state-
ments.

8 Getting Started with DFSORT R14

Part 2. Learning to Write JCL and DFSORT Control
Statements

Chapter 2. Sorting, Merging, and Copying Data Sets 11
Sorting Data Sets . 11

Sorting by Multiple Fields . 13
Continuing a Statement . 14
Sorting Data Sets with the JCL EXEC Statement 15

Merging Data Sets . 16
Writing the MERGE Control Statement . 17
Merging Data Sets with the JCL EXEC Statement 18

Copying Data Sets . 19
Specifying COPY on the SORT, MERGE, or OPTION Statement 19
Copying Data Sets with the JCL EXEC Statement 20

Chapter 3. Tailoring the Input Data Set with INCLUDE and OMIT 21
Writing the INCLUDE Statement . 21
Writing the OMIT Statement . 24

Allowable Comparisons for INCLUDE and OMIT 25
Writing Constants . 26

Character Strings . 26
Hexadecimal Strings . 26
Decimal Numbers . 26

Chapter 4. Summing Records . 27
Writing the SUM Statement . 27
Suppressing Records with Duplicate Control Fields 29
Handling Overflow . 29

Chapter 5. Reformatting Records . 31
Reformatting Records After Sorting . 31
Reordering Fields to Reserve Space . 32
Inserting Binary Zeros . 33
Inserting Blanks . 33
Inserting Constants . 34

Character Strings . 35
Hexadecimal Strings . 35
Setting Up the Report Format . 35

Reformatting Records Before Sorting . 37
Using Other Statements with INREC . 38
Preventing Overflow When Summing Values . 40

Chapter 6. Creating Multiple Output Data Sets and Reports 41
Creating Multiple Copies . 42
Creating Multiple Output Data Sets with Unique Content 43
Creating Reports: ICETOOL vs OUTFIL . 45
Using OUTFIL to Create Reports . 45

Using the FNAMES and LINES Parameters 49
Using the HEADER2 Parameter . 50
Using the OUTREC Parameter . 52
Using the TRAILER1 Parameter . 54

 Copyright IBM Corp. 1983, 1998 9

Chapter 7. Calling DFSORT from a Program 57
Passing Control Statements . 57
Calling DFSORT from a COBOL Program . 57

Sorting Records . 57
Merging Records . 60

Sorting with COBOL FASTSRT . 63
Calling DFSORT from a PL/I Program . 63

Chapter 8. Overriding Installation Defaults 65
Specifying PARM Parameters on a JCL EXEC Statement 65
Writing an OPTION Control Statement . 65
Specifying DFSPARM Parameters . 66

Chapter 9. Using DFSORT Efficiently . 67
Be Generous with Main Storage . 67
Use High–Speed DASD or Hiperspace . 67
Eliminate Unnecessary Fields with INREC . 68
Eliminate Unnecessary Records with INCLUDE or OMIT 68
Reduce File Size with STOPAFT and SKIPREC 68
Consolidate Records with SUM . 68
Create Multiple Output Data Sets with OUTFIL 69
Run DFSORT with JCL . 69
Use FASTSRT with COBOL . 69
Avoid Options That Might Degrade Performance 69

10 Getting Started with DFSORT R14

Chapter 2. Sorting, Merging, and Copying Data Sets

This tutorial shows you how to sort, merge, and copy data sets by writing DFSORT
program control statements that are processed with JCL.

DFSORT program control statements are input in the JCL used to run DFSORT.
To keep the instructions simple the program control statements are covered first
and the related JCL statements are explained afterward. For most of the tutorials
you will concentrate on JCL-invoked DFSORT, that is, running DFSORT with JCL.
Information on calling DFSORT from a program (dynamic invocation) is presented
in Chapter 7, “Calling DFSORT from a Program” on page 57.

Sorting Data Sets
To run DFSORT with the JCL EXEC statement, write a SORT control statement to
describe the control fields, and the order in which you want them sorted. The
control statements you write are part of the input stream read from the SYSIN DD
statement in the JCL.

You can use SORT with all of the other DFSORT control statements.

To write a SORT statement that sorts the bookstore records by the course depart-
ment field (as shown in Table 6 on page 12):

Make sure that the statement is coded between columns 2 and 71. Your control
statement should look like this:

1 2 71 8ð
 SORT FIELDS=(11ð,5,CH,A)

─┬─ │ ─┐ │
│ │ │ └─────5 Ascending order
│ │ │
│ │ └───────5 Character data

 │ │
│ └──────────5 Length of department field

 │
└─────────────5 Beginning of department field

Table 5. Steps to Create the SORT Statement to Sort by Department

Step Action

1 Leave at least one blank, and type SORT

2 Leave at least one blank and type FIELDS=

3 Type, in parenthesis and separated by commas:

1. Where the course department field begins, relative to the beginning of the
record in the bookstore data set (the first position is byte 1). The course
department field begins at byte 110.

2. The length of the department field in bytes. The department field is 5 bytes
long.

3. A code for the data format. The department field contains character data,
which you specify as CH. (Table 2 on page 4 shows the codes for the
most common data formats.)

4. The letter A, for ascending order.

 Copyright IBM Corp. 1983, 1998 11

Remember that although Figure 6 shows only certain fields, the displayed fields are
not the only ones in the output data set. Your output data set will more closely
resemble the fold-out of the sample bookstore data set.

To sort the records in descending order, specify D instead of A. For example, to
sort the prices for each book in descending order, type:

 SORT FIELDS=(17ð,4,BI,D)
 ──┬── │
 │ │

│ └─────5 Descending order
 │
 └────────────5 Price

The sort order is bytes 170 through 173 as binary data in descending sequence.
Table 7 on page 13 shows the results of the sort in descending order.

Table 6. Sample Bookstore Data Set Sorted by Course Department in Ascending Order

Book Title
Course Depart-
ment

1 75 110 114

LIVING WELL ON A SMALL BUDGET
PICK'S POCKET DICTIONARY
INTRODUCTION TO BIOLOGY
SUPPLYING THE DEMAND
STRATEGIC MARKETING
COMPUTER LANGUAGES
VIDEO GAME DESIGN
COMPUTERS: AN INTRODUCTION
NUMBERING SYSTEMS
SYSTEM PROGRAMMING
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
EDITING SOFTWARE MANUALS
MODERN ANTHOLOGY OF WOMEN POETS
THE COMPLETE PROOFREADER
SHORT STORIES AND TALL TALES
THE INDUSTRIAL REVOLUTION
EIGHTEENTH CENTURY EUROPE
CRISES OF THE MIDDLE AGES
INTRODUCTION TO PSYCHOLOGY
ADVANCED TOPICS IN PSYCHOANALYSIS

BIOL
BUSIN
BUSIN
COMP
COMP
COMP
COMP
COMP
ENGL
ENGL
ENGL
ENGL
ENGL
HIST
HIST
HIST
PSYCH
PSYCH

12 Getting Started with DFSORT R14

Table 7. Sample Bookstore Data Set Sorted by Price in Descending Order

Book Title Price

1 75 170 173

LIVING WELL ON A SMALL BUDGET
SYSTEM PROGRAMMING
COMPUTER LANGUAGES
ADVANCED TOPICS IN PSYCHOANALYSIS
STRATEGIC MARKETING
INTRODUCTION TO BIOLOGY
INTRODUCTION TO PSYCHOLOGY
VIDEO GAME DESIGN
SUPPLYING THE DEMAND
COMPUTERS: AN INTRODUCTION
EIGHTEENTH CENTURY EUROPE
SHORT STORIES AND TALL TALES
EDITING SOFTWARE MANUALS
CRISES OF THE MIDDLE AGES
THE INDUSTRIAL REVOLUTION
THE COMPLETE PROOFREADER
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
MODERN ANTHOLOGY OF WOMEN POETS
NUMBERING SYSTEMS
PICK'S POCKET DICTIONARY

 9900
 3195
 2600
 2600
 2350
 2350
 2200
 2199
 1925
 1899
 1790
 1520
 1450
 1200
 795
 625
 595
 450
 360
 295

Sorting by Multiple Fields
You can further sort the records in the bookstore data set by specifying multiple
control fields. When you specify two or more control fields, you specify them in the
order of greater to lesser priority. Note that control fields might overlap or be con-
tained within other control fields.

Table 8 on page 14 shows how the records would be sorted if you specified the
following control fields in the order they are listed:

 1. Course department
 2. Course number

3. Instructor's last name
 4. Instructor's initials
 5. Book title.

So, if two records have the same department, they are sorted by course number. If
they also have the same course number, they are sorted by instructor's last name.
If they also have the same last name, they are sorted by initials. Finally, if they also
have the same initials, they are sorted by title.

Specify the location, length, data format, and order for each of the control fields, as
follows:

 SORT FIELDS=(11ð,5,CH,A,115,5,CH,A,145,15,CH,A,16ð,2,CH,A,1,75,CH,A)
────┬───── ────┬───── ─────┬───── ────┬───── ────┬────

│ │ │ │ └────5 Book title
 │ │ │ │

│ │ │ └───────────────5 Instructor's initials
 │ │ │

│ │ └──────────────────────────5 Instructor's last name
 │ │

│ └──────────────────────────────────────5 Course number
 │
 └───5 Department

 Chapter 2. Sorting, Merging, and Copying Data Sets 13

The records are sorted as shown in Table 8.

Table 8. Sample Bookstore Data Set Sorted by Multiple Fields

Book Title

Course
Depart-
ment

Course
Number

Instructor's Last
Name

Instruc-
tor's Ini-
tials

1 75 110 114 115 119 145 159 160 161

LIVING WELL ON A SMALL BUDGET
PICK'S POCKET DICTIONARY
INTRODUCTION TO BIOLOGY
STRATEGIC MARKETING
SUPPLYING THE DEMAND
NUMBERING SYSTEMS
COMPUTER LANGUAGES
COMPUTERS: AN INTRODUCTION
SYSTEM PROGRAMMING
VIDEO GAME DESIGN
SHORT STORIES AND TALL TALES
EDITING SOFTWARE MANUALS
THE COMPLETE PROOFREADER
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
MODERN ANTHOLOGY OF WOMEN POETS
THE INDUSTRIAL REVOLUTION
CRISES OF THE MIDDLE AGES
EIGHTEENTH CENTURY EUROPE
INTRODUCTION TO PSYCHOLOGY
ADVANCED TOPICS IN PSYCHOANALYSIS

BIOL
BUSIN
BUSIN
COMP
COMP
COMP
COMP
COMP
ENGL
ENGL
ENGL
ENGL
ENGL
HIST
HIST
HIST
PSYCH
PSYCH

 80521
 70124
 70251
 00032
 00032
 00032
 00103
 00205
 10054
 10347
 10347
 10856
 10856
 50420
 50521
 50632
 30016
 30975

GREENBERG
LORCH
MAXWELL
CHATTERJEE
CHATTERJEE
CHATTERJEE
SMITH
NEUMANN
BUCK
MADRID
MADRID
FRIEDMAN
FRIEDMAN
GOODGOLD
WILLERTON
BISCARDI
ZABOSKI
NAKATSU

HC
HH
RF
AN
CL
CL
DC
LB
GR
MM
MM
KR
KR
ST
DW
HR
RL
FL

You can often shorten the length of control statements. You can specify fields
together whenever they are next to each other and have the same data format. You
can shorten this last statement by specifying the department and course number
together as one field, and the instructor's last name and initials together as one
field.

 SORT FIELDS=(11ð,1ð,CH,A,145,17,CH,A,1,75,CH,A)
─────┬───── ─────┬───── ────┬────

 │ │ └─────5 Title
 │ │

│ └────────────────5 Instructor's last name and initials
 │

└────────────────────────────5 Department and course number

Also, if all the control fields have the same data format, you can specify the data
format just once, using the FORMAT= parameter. For example:

 SORT FIELDS=(11ð,1ð,A,145,17,A,1,75,A),FORMAT=CH

Continuing a Statement
If you cannot fit your SORT statement (or any other DFSORT control statement)
between columns 2 through 71, you can continue it on the next line. If you end a
line with a comma followed by a blank, DFSORT treats the next line as a continua-
tion. The continuation can begin anywhere between columns 2 through 71.

For example:

14 Getting Started with DFSORT R14

 SORT FIELDS=(11ð,1ð,A,145,17,A,
 1,75,A),FORMAT=CH

Sorting Data Sets with the JCL EXEC Statement
The job control language (JCL) you need to do a sort depends on whether you run
DFSORT with the JCL EXEC statement or call DFSORT from a program. For now,
concentrate on running DFSORT with the JCL EXEC statement. Information on
calling DFSORT from a program is presented in Chapter 7, “Calling DFSORT from
a Program” on page 57.

Your operating system uses the JCL you supply with your DFSORT program
control statements to:

� Identify you as an authorized user
� Allocate the necessary resources to run your job
� Run your job
� Return information to you about the results
� Terminate your job

Unless you create your jobs with the interactive DFSORT Panels facility, you must
supply JCL with every DFSORT job you submit.

Required JCL includes a JOB statement, an EXEC statement, and several DD
statements. The statements you need and their exact form depend upon whether
you:

� Invoke DFSORT with an EXEC statement in the input job stream, or with a
system macro instruction within another program

� Choose to use EXEC statement cataloged procedures to invoke DFSORT

� Choose to specify various DFSORT options with the EXEC statement PARM
parameter

� Choose to supply EXEC PARM options and DFSORT control statements
together in the DFSPARM DD statement

� Choose to supply DFSORT control statements in the SYSIN DD statements

� Want to use program exits to activate routines of your own

Information on when you would choose each of the above options is detailed in
Application Programming Guide.

The JCL statements you need for most jobs are described below.

//jobname JOB Signals the beginning of a job. At your site, you might be
required to specify information such as your name and
account number on the JOB statement.

//stepname EXEC Signals the beginning of a job step and tells the operating
system what program to run. To run DFSORT, write the
EXEC statement like this:

//stepname EXEC PGM=SORT

//STEPLIB DD Defines the library containing the DFSORT program. If your
DFSORT program is in a system library, you can omit the
STEPLIB statement.

 Chapter 2. Sorting, Merging, and Copying Data Sets 15

//SYSOUT DD Defines the output data set for messages.

//SORTIN DD Defines the input data set.

| //SORTWKdd DD Defines a work storage data set for a sort. For most applica-
| tions, one work storage data set is sufficient.

//SORTOUT DD Defines the output data set.

//SYSIN DD Precedes the DFSORT program control statements.

Below is some sample JCL that will run DFSORT. It assumes the input and output
record lengths are the same. In Chapter 5, “Reformatting Records” on page 31,
you will see how to modify the SORTOUT DD statement if the record length is
changed.

//EXAMP JOB A492,PROGRAMMER
//SORT EXEC PGM=SORT
//STEPLIB DD DSN=A492.SM,DISP=SHR
//SYSOUT DD SYSOUT=A
//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//SORTWKð1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SORTOUT DD DSN=A123456.SORT.SAMPOUT,DISP=OLD
//SYSIN DD \
 SORT FIELDS=(11ð,1ð,A,145,17,A,
 1,75,A),FORMAT=CH
/\

Application Programming Guide contains additional information on running
DFSORT with the JCL EXEC statement.

 So Far

So far in this chapter you covered how to write a SORT program control state-
ment and how to run that sort with the JCL EXEC statement. The next tutorial
explains how to use the MERGE program control statement to merge two data
sets.

Merging Data Sets
Generally, the reason for merging data sets is to add more records to a data set
that is already sorted.

For example, assume that the bookstore data set is already sorted by course
department and book title (as shown in Table 9 on page 17), and you want to
update it by merging it with a data set that contains five new records, also sorted
by course department and book title.

16 Getting Started with DFSORT R14

For this example, use a new data set such as the one shown in Table 10.

To merge data sets, you write a MERGE control statement and several JCL state-
ments. Whenever you merge data sets, you must make sure that their records have
the same format and that they have been previously sorted by the same control
fields. You can merge up to 16 data sets at a time.

You can use MERGE with all of the other DFSORT control statements.

Table 9. Sample Bookstore Data Set Sorted by Course Department and Book Title

Book Title
Course
Department

1 75 110 114

LIVING WELL ON A SMALL BUDGET
PICK'S POCKET DICTIONARY
INTRODUCTION TO BIOLOGY
STRATEGIC MARKETING
SUPPLYING THE DEMAND
COMPUTER LANGUAGES
COMPUTERS: AN INTRODUCTION
NUMBERING SYSTEMS
SYSTEM PROGRAMMING
VIDEO GAME DESIGN
EDITING SOFTWARE MANUALS
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
MODERN ANTHOLOGY OF WOMEN POETS
SHORT STORIES AND TALL TALES
THE COMPLETE PROOFREADER
CRISES OF THE MIDDLE AGES
EIGHTEENTH CENTURY EUROPE
THE INDUSTRIAL REVOLUTION
ADVANCED TOPICS IN PSYCHOANALYSIS
INTRODUCTION TO PSYCHOLOGY

BIOL
BUSIN
BUSIN
COMP
COMP
COMP
COMP
COMP
ENGL
ENGL
ENGL
ENGL
ENGL
HIST
HIST
HIST
PSYCH
PSYCH

Table 10. Five New Records Sorted by Course Department and Book Title

Book Title
Course
Department

1 75 110 114

INTERNATIONAL COOKBOOK
WORLD JOURNEYS BY TRAIN
ARTS AND CRAFTS OF ASIA
BIOCHEMISTRY
BEHAVIORAL ANALYSIS

ART
BIOL
PSYCH

Writing the MERGE Control Statement
The format of the MERGE statement is the same as that of the SORT statement.
To merge the bookstore master data set with the data set containing the five new
records, write:

 Chapter 2. Sorting, Merging, and Copying Data Sets 17

 MERGE FIELDS=(11ð,5,A,1,75,A),FORMAT=CH
 ───┬─── ──┬───
 │ └─────────────5 Title
 │
 └────────────────────5 Department

Table 11 shows the merged output.

Table 11. Sample Bookstore Data Set Merged with Five New Records

Book Title

Course
Depart-
ment

1 75 110 114

INTERNATIONAL COOKBOOK
LIVING WELL ON A SMALL BUDGET
PICK'S POCKET DICTIONARY
WORLD JOURNEYS BY TRAIN
ARTS AND CRAFTS OF ASIA
BIOCHEMISTRY
INTRODUCTION TO BIOLOGY
STRATEGIC MARKETING
SUPPLYING THE DEMAND
COMPUTER LANGUAGES
COMPUTERS: AN INTRODUCTION
NUMBERING SYSTEMS
SYSTEM PROGRAMMING
VIDEO GAME DESIGN
EDITING SOFTWARE MANUALS
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
MODERN ANTHOLOGY OF WOMEN POETS
SHORT STORIES AND TALL TALES
THE COMPLETE PROOFREADER
CRISES OF THE MIDDLE AGES
EIGHTEENTH CENTURY EUROPE
THE INDUSTRIAL REVOLUTION
ADVANCED TOPICS IN PSYCHOANALYSIS
BEHAVIORAL ANALYSIS
INTRODUCTION TO PSYCHOLOGY

ART
BIOL
BIOL
BUSIN
BUSIN
COMP
COMP
COMP
COMP
COMP
ENGL
ENGL
ENGL
ENGL
ENGL
HIST
HIST
HIST
PSYCH
PSYCH
PSYCH

Merging Data Sets with the JCL EXEC Statement
As in a sort, the JCL you need depends on whether you run DFSORT with the JCL
EXEC statement or call it from a program. This chapter only discusses running
DFSORT with the JCL EXEC statement.

The JCL needed for a merge is the same as that for a sort, with the following
exceptions:

| � You do not use the SORTWKdd DD statement.

� Instead of the SORTIN DD statement, you use SORTINnn DD statements to
define the input data sets. The SORTINnn DD statements name the input data
sets, and tell how many data sets will be merged. You need one SORTINnn
DD statement for each data set being merged. The value nn in SORTINnn is a

| number from 00 to 99, indicating the number of data sets to be merged.

18 Getting Started with DFSORT R14

To merge the pre-sorted bookstore data set and the data set containing the new
records, code the following JCL statements for this example. The new data set is
called A123456.NEW and the sorted version of the bookstore data set is called
A123456.MASTER. For this example, it is assumed that the input data sets are
cataloged and that the output data set will be cataloged.

//EXAMP JOB A492,PROGRAMMER
//SORT EXEC PGM=SORT
//STEPLIB DD DSN=A492.SM,DISP=SHR
//SYSOUT DD SYSOUT=A
//SORTINð1 DD DSN=A123456.MASTER,DISP=OLD
//SORTINð2 DD DSN=A123456.NEW,DISP=OLD
//SORTOUT DD DSN=A123456.SORT.SAMPOUT,DISP=OLD
//SYSIN DD \
 MERGE FIELDS=(11ð,5,A,1,75,A),FORMAT=CH
/\

In Chapter 7, “Calling DFSORT from a Program” on page 57, you learn how to
merge data sets when calling DFSORT from a program.

 So Far

So far in this chapter you covered how to write both the SORT and MERGE
program control statements and how to process those control statements using
the JCL EXEC statement. Now you continue with the tutorial on COPY.

Copying Data Sets
With DFSORT you can copy data sets directly without performing a sort or merge.

You can use COPY with all of the other DFSORT control statements except SUM.
DFSORT can select and reformat the specific data sets you want to copy by using
the control statements covered in later chapters.

You write a copy statement by specifying COPY on the SORT, MERGE, or
OPTION statement.

Specifying COPY on the SORT, MERGE, or OPTION Statement
The SORT and MERGE statements change very little when you specify COPY.
Just replace the information you usually put in parentheses with the word COPY:

 SORT FIELDS=COPY
 MERGE FIELDS=COPY

You can also specify COPY on the OPTION statement:

 OPTION COPY

All three of these statements have identical results.

 Chapter 2. Sorting, Merging, and Copying Data Sets 19

Copying Data Sets with the JCL EXEC Statement
| The JCL for a copy application is the same as for a sort, except that you do not
| use the SORTWKdd DD statement.

This sample JCL will copy a data set using the OPTION COPY statement:

//EXAMP JOB A492,PROGRAMMER
//SORT EXEC PGM=SORT
//STEPLIB DD DSN=A492.SM,DISP=SHR
//SYSOUT DD SYSOUT=A
//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//SORTOUT DD DSN=A123456.SAMP.SORTOUT,DISP=OLD
//SYSIN DD \
 OPTION COPY
/\

You can use SORT FIELDS=COPY or MERGE FIELDS=COPY instead of OPTION
COPY to produce the same results.

 Summary

In this chapter of Getting Started you have covered the following concepts:

� Writing the SORT, COPY, or MERGE program control statements
� Using the JCL EXEC to process your sort, copy, or merge

As you continue with the tutorials, you will cover two methods of tailoring your
input data set: using the INCLUDE statement and using the OMIT statement.
Chapter 3, “Tailoring the Input Data Set with INCLUDE and OMIT” on page 21
covers padding and truncation rules, allowable comparison operators for
INCLUDE and OMIT, and formats for writing constants and strings.

20 Getting Started with DFSORT R14

 Tailoring the Input Data Set

Chapter 3. Tailoring the Input Data Set with INCLUDE and
OMIT

Often, you need only a subset of the records in a data set for an application. This
chapter explains how to tailor the input data set by selecting specific records.

By tailoring the data set, you can increase the speed of the sort, merge, or copy.
The fewer the records, the less time it takes to process them.

You tailor an input data set by:

� Using an INCLUDE control statement to collect wanted records
� Using an OMIT control statement to exclude unwanted records

Your choice of INCLUDE or OMIT depends on which is easier and more efficient to
write for a given application. You cannot use both statements together.

You select the records you want included or omitted by comparing the contents of a
field with either:

Another field For example, you can select records for which the author’s last
name is the same as the instructor’s last name.

A constant The constant can be a character string, a decimal number, or a
hexadecimal string. For example, you can select records that have
the character string “HIST” in the department field.

You can also combine two conditions with logical ANDs and ORs. For example,
you can select records that have either “HIST” or “PSYCH” in the department field.

INCLUDE and OMIT also offer a powerful substring search capability, and allow
you to select records based on the result of bit logic tests using bit or hexadecimal
masks or bit constants. Examples of these features are not shown in this book but
details can be found in Application Programming Guide.

Writing the INCLUDE Statement
Suppose it is the end of the year and you want to sort, by title, only the books that
you need to reorder for the coming year. If the number of copies sold this year for a
particular book is greater than the number in stock, you can assume you need to
order more copies.

To write an INCLUDE statement that selects only the books you need to order:

 Copyright IBM Corp. 1983, 1998 21

 Tailoring the Input Data Set

You can select from the following comparison operators:

Table 12. Steps to Create the INCLUDE Statement for Books You Need to Order

Step Action

1 Leave at least one blank and type INCLUDE

2 Leave at least one blank and type COND=

3 Type, in parentheses, and separated by commas:

1. The location, length, and data format of the number sold field

2. The comparison operator GT (comparison operators are shown in Figure 1
on page 22) for greater than

3. The location, length, and data format of the number-in- stock field. You can
use FORMAT= when fields have the same data format.

Comparison Operator Meaning

EQ Equal to

NE Not equal to

GT Greater than

GE Greater than or equal to

LT Less than

LE Less than or equal to

Figure 1. Comparison Operators

You can place the SORT statement either before or after the INCLUDE statement.
Control statements do not have to be in any specific order. However, it is good
documentation practice to code them in the order in which they are processed. For
a flowchart showing the order in which all the control statements are processed,
see Appendix C, “Processing Order of Control Statements” on page 121.

 INCLUDE COND=(166,4,GT,162,4,),FORMAT=BI
 ──┬── ──┬──

│ └──────────5 Number in stock
 │

└───────────────────5 Number sold

 SORT FIELDS=(1,75,CH,A)

This sorts the tailored data set by title in ascending order by using the SORT state-
ment. Table 13 shows the sorted data set.

22 Getting Started with DFSORT R14

 Tailoring the Input Data Set

Suppose you want to tailor the input data set even further, to sort only the books
you need to order from COR publishers. In this case, two conditions must be true:

� The number sold is greater than the number in stock.
� The book is published by COR.

To add the second condition, expand the INCLUDE statement by adding a logical
AND, and compare the contents of the publisher field to the character string “COR”
(see “Writing Constants” on page 26 for details how to specify constants). Because
the publisher field is 4 bytes long, “COR” will be padded on the right with one
blank.

Table 13. Books for which Number Sold is greater than Number in Stock

Book Title
Number In
Stock

Number
Sold

1 75 162 165 166 169

ADVANCED TOPICS IN PSYCHOANALYSIS
COMPUTER LANGUAGES
COMPUTERS: AN INTRODUCTION
CRISES OF THE MIDDLE AGES
EDITING SOFTWARE MANUALS
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
INTRODUCTION TO BIOLOGY
MODERN ANTHOLOGY OF WOMEN POETS
NUMBERING SYSTEMS
STRATEGIC MARKETING
SUPPLYING THE DEMAND
SYSTEM PROGRAMMING
THE COMPLETE PROOFREADER

 1
 5
 20
 14
 13
 2
 6
 1
 6
 3
 0
 4
 7

 12
 29
 26
 17
 32
 32
 11
 26
 27
 35
 32
 23
 19

 INCLUDE COND=(166,4,BI,GT,162,4,BI,AND,1ð6,4,CH,EQ,C'COR')
 SORT FIELDS=(1,75,CH,A)

Table 14 shows the result.

As another example, you might sort only the books for courses 00032 and 10347
by writing the INCLUDE and SORT statements as follows:

Table 14. COR Books for which Number Sold is greater than Number in Stock

Book Title Publisher
Number
In Stock

Number
Sold

1 75 106 109 162 165 166 169

CRISES OF THE MIDDLE AGES
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
MODERN ANTHOLOGY OF WOMEN POETS
SUPPLYING THE DEMAND

COR
COR
COR
COR

 14
 2
 1
 0

 17
 32
 26
 32

 INCLUDE COND=(115,5,CH,EQ,C'ððð32',OR,115,5,CH,EQ,C'1ð347')
 SORT FIELDS=(115,5,CH,A)

Note: In the previous example, you cannot substitute C'32' for C'00032',
because character constants are padded on the right with blanks. DFSORT
uses the following rules for padding and truncation:

 Chapter 3. Tailoring the Input Data Set with INCLUDE and OMIT 23

 Tailoring the Input Data Set

Padding adds fillers in data, usually zeros or blanks

Truncation deletes or omits a leading or trailing portion of a string

In comparisons, the following rules apply:

� In a field-to-field comparison, the shorter field is padded as appropriate
(with blanks or zeros).

� In a field-to-constant comparison, the constant is padded or truncated to
the length of the field. Decimal constants are padded or truncated on
the left. Character and hexadecimal constants are padded or truncated
on the right.

Writing the OMIT Statement
Suppose that you want to sort, by title, all the books used for courses but not those
for general reading. In this case, you can use an OMIT statement that excludes
records containing a blank in the course department field.

The format of the OMIT statement is the same as that of the INCLUDE statement.
To exclude the general reading books, write:

 OMIT COND=(11ð,5,CH,EQ,C' ')
 SORT FIELDS=(1,75,CH,A)

Table 15 shows the sorted data set.

Table 15. Sorted Data Set without Books Not Required for Classes

Book Title
Course Depart-
ment

1 75 110 114

ADVANCED TOPICS IN PSYCHOANALYSIS
COMPUTER LANGUAGES
COMPUTERS: AN INTRODUCTION
CRISES OF THE MIDDLE AGES
EDITING SOFTWARE MANUALS
EIGHTEENTH CENTURY EUROPE
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
INTRODUCTION TO BIOLOGY
INTRODUCTION TO PSYCHOLOGY
MODERN ANTHOLOGY OF WOMEN POETS
NUMBERING SYSTEMS
SHORT STORIES AND TALL TALES
STRATEGIC MARKETING
SUPPLYING THE DEMAND
SYSTEM PROGRAMMING
THE COMPLETE PROOFREADER
THE INDUSTRIAL REVOLUTION
VIDEO GAME DESIGN

PSYCH
COMP
COMP
HIST
ENGL
HIST
ENGL
BIOL
PSYCH
ENGL
COMP
ENGL
BUSIN
BUSIN
COMP
ENGL
HIST
COMP

24 Getting Started with DFSORT R14

 Tailoring the Input Data Set

Allowable Comparisons for INCLUDE and OMIT
Table 16 and Table 17 show the allowable field-to-field and field-to-constant com-
parisons for INCLUDE and OMIT.

For example, if you want to sort by author’s name and include only those books
whose author’s last name begins with “M,” you can compare the contents of byte
76 (the first byte of the author’s last name), which is in character format, with either
a character or hexadecimal string:

Table 16. Allowable Field-to-Field Comparisons

Field
Format

BI

CH

ZD

PD

BI √ √

CH √ √

ZD √ √

PD √ √

Table 17. Allowable Field-to-Constant Comparisons

Field Format Character String Hexadecimal String Decimal Number

BI √ √

CH √ √

ZD √

PD √

 INCLUDE COND=(76,1,CH,EQ,C'M')
 SORT FIELDS=(76,15,CH,A)

or

 INCLUDE COND=(76,1,CH,EQ,X'D4')
 SORT FIELDS=(76,15,CH,A)

Also, if you want to sort by number in stock only the books for which the number in
stock is less than 10, you can compare the contents of the number-in-the stock
field, which is in binary format, to a hexadecimal string:

 INCLUDE COND=(162,4,BI,LT,X'ðððððððA')
 SORT FIELDS=(162,4,BI,A)

Again, remember the padding and truncation rules. If you specify X'0A', the string
is padded on the right instead of the left.

 Chapter 3. Tailoring the Input Data Set with INCLUDE and OMIT 25

 Tailoring the Input Data Set

 Writing Constants
The formats for writing character strings, hexadecimal strings, and decimal numbers
are shown below.

 Character Strings
The format for writing a character string is:

C'x...x'

where x is an EBCDIC character. For example, C'FERN'.

If you want to include a single apostrophe in the string, you must specify it as two
single apostrophes. For example, O’NEILL must be specified as C'O''NEILL'.

 Hexadecimal Strings
The format for writing a hexadecimal string is:

X'yy...yy'

where yy is a pair of hexadecimal digits. For example, X'7FB0'.

 Decimal Numbers
The format for writing a decimal number is:

n...n or ±n...n

where n...n is a decimal digit. Examples are 24, +24, and -24.

Decimal numbers must not contain commas or decimal points.

 Summary

This chapter covered two ways to tailor the input data set to make processing
more efficient. You wrote INCLUDE and OMIT statements and read about
allowable comparison operators and the formats for writing constants in the
program control statement.

26 Getting Started with DFSORT R14

 Summing Records

 Chapter 4. Summing Records

Suppose that the English department wants to know the total price of books for all
its courses. You can tailor the file to include only records for the English depart-
ment by using the INCLUDE statement, and add the book prices together by using
the SORT and SUM statements.

On the SUM control statement, you specify one or more numeric fields that are to
be summed whenever records have equally collating control fields (control fields
are specified on the SORT statement). The numeric fields can be in binary, packed
decimal, or zoned decimal format.

To sum the prices for all the records for the English department, specify the price
field on the SUM statement and the department field on the SORT statement. By
the time SUM and SORT are processed, INCLUDE has already tailored the file to
contain only the records for the English department, making the department field
equal for all the records, and allowing the prices to be summed. (For a flowchart
showing the order in which the INCLUDE, SUM, and SORT statements are proc-
essed, see Appendix C, “Processing Order of Control Statements” on page 121.)

When you sum records, keep in mind that two types of fields are involved:

Control fields specified on the SORT statement

Summary fields specified on the SUM statement

The contents of the summary fields are summed only when the contents of the
control fields are of the same data type. See Table 2 on page 4.

Writing the SUM Statement
To write a SUM statement that sums the prices for the English department:

The INCLUDE, SORT, and SUM statements are shown below:

 INCLUDE COND=(11ð,5,CH,EQ,C'ENGL')
 SORT FIELDS=(11ð,5,CH,A)
 SUM FIELDS=(17ð,4,BI)
 ────┬───
 └──────5 Price

When the prices are summed, the final sum appears in the price field of one
record, and the other records are deleted. Therefore, the result (shown in Table 19
on page 28) is only one record, containing the sum. You can control which record
appears if you specify that records keep their original order. For the examples, the
default is for records with equally collating control fields to appear in their original

Table 18. Steps to Create the SUM Statement for Prices

Step Action

1 Leave at least one blank and type SUM

2 Leave at least one blank and type FIELDS=

3 Type, in parentheses and separated by commas, the location, length, and data
format of the price field.

 Copyright IBM Corp. 1983, 1998 27

 Summing Records

order. When summing records keeping the original order, DFSORT chooses the
first record to contain the sum.

Table 19. Sum of Prices for English Department

Book Title
Course Depart-
ment Price

1 75 110 114 170 173

INKLINGS: AN ANTHOLOGY OF YOUNG POETS1 ENGL2 46403

Note:

1 Some of the fields in your summation record might not be meaningful, such as the book title field in
Table 19. You could use the OMIT statement to omit this field. In the next chapter, you will learn two ways
to leave out fields that are not meaningful.

2 Specified as a control field.

3 Specified as a summary field.

Suppose now that the English department wants to know the total price of books
for each of its courses. In this case, you still select only the English department’s
records using INCLUDE, and specify the price field on the SUM statement, but you
specify the course number on the SORT statement.

 INCLUDE COND=(11ð,5,CH,EQ,C'ENGL')
 SORT FIELDS=(115,5,CH,A)
 SUM FIELDS=(17ð,4,BI)
 ────┬───
 └────────5 Price

Table 20 shows the result, one record per course.

For an example using two summary fields, assume that for inventory purposes you
want to sum separately the number of books in stock and the number sold for each
of the publishers.

For this application, specify the publisher as the control field on the SORT state-
ment and the number in stock and number sold as summary fields on the SUM
statement.

 SORT FIELDS=(1ð6,4,CH,A)
 SUM FIELDS=(162,4,166,4),FORMAT=BI
 ──┬── ──┬──

│ └───5 Number sold
 │

└─────────5 Number in stock

Table 21 on page 29 shows the result, one record per publisher.

Table 20. Sum of Prices for English Department

Book Title
Course
Number Price

1 75 115 119 170 173

SHORT STORIES AND TALL TALES
EDITING SOFTWARE MANUALS
INKLINGS: AN ANTHOLOGY OF YOUNG POETS

 10054
 10347
 10856

 1520
 2075
 1045

28 Getting Started with DFSORT R14

 Summing Records

Table 21. Sum of Number in Stock and Number Sold for Each Publisher

Book Title Publisher
Number
In Stock

Number
Sold

1 75 106 109 162 165 166 169

LIVING WELL ON A SMALL BUDGET
COMPUTER LANGUAGES
VIDEO GAME DESIGN
COMPUTERS: AN INTRODUCTION

COR
FERN
VALD
WETH

 103
 19
 42
 62

 161
 87
 97
 79

Suppressing Records with Duplicate Control Fields
Apart from summing values, you can also use SUM to delete records with duplicate
control fields.

For example, you might want to list the publishers in ascending order, with each
publisher appearing only once. If you use only the SORT statement, COR appears
seven times (because seven books in the file are published by COR), FERN
appears four times, VALD five times, and WETH four times.

By specifying FIELDS=NONE on the SUM statement, as shown below, DFSORT
writes only one record per publisher:

 SORT FIELDS=(1ð6,4,CH,A)
 SUM FIELDS=NONE

Table 22 shows the result.

Table 22. List of Publishers, Deleting Duplicates

Book Title Publisher

1 75 106 109

LIVING WELL ON A SMALL BUDGET
COMPUTER LANGUAGES
VIDEO GAME DESIGN
COMPUTERS: AN INTRODUCTION

COR
FERN
VALD
WETH

 Handling Overflow
When a sum becomes larger than the space available for it, overflow occurs. For
example, if a 2-byte binary field (unsigned) contains X'FFFF' and you add
X'0001' to it, overflow occurs, because the sum requires more than two bytes.

 FFFF
 ððð1
 1ðððð

If overflow occurs, the two records involved are not added together. That is, the
contents of the records are left untouched, neither record is deleted, and the
records are still available to be summed. Overflow does not prevent further
summary.

 Chapter 4. Summing Records 29

 Summing Records

In some cases, you can correct overflow by padding the summary fields with zeros,
using the INREC control statement. “Preventing Overflow When Summing Values”
on page 40 shows you how to do this.

 Summary

This chapter covered summing records in your data set. It explained how to use
the SUM statement to sum records with equal control fields, and how to sup-
press any records with duplicate control fields. Now, you continue with tutorials
about using OUTREC and INREC to reformat your data sets.

30 Getting Started with DFSORT R14

 Reformatting Records

 Chapter 5. Reformatting Records

You can reformat records in your data sets by using the OUTREC and INREC
control statements. With OUTREC and INREC, you can:

 � Delete fields.
 � Reorder fields.
� Insert separators (blanks, zeros, or constants).

The difference between the two DFSORT control statements is that OUTREC refor-
mats records after they are sorted, copied, or merged, whereas INREC reformats
records before they are sorted, copied, or merged. This has an effect on other
control statements. See “Using Other Statements with INREC” on page 38 for infor-
mation about how INREC affects other control statements.

INREC and OUTREC perform the same functions. When deciding which to use,
remember their processing order. In general:

� If you are deleting fields, try to use INREC because shorter records take less
time to sort, merge, or copy (INREC reformats the records before they are
processed).

� If you are going to insert separators, use OUTREC because OUTREC inserts
the separators into the records after they are processed.

� If you are reordering fields, you can use either control statement because reor-
dering fields does not affect the record length.

Reformatting Records After Sorting
In the last chapter, you used the SUM statement to sum the price of the books in
stock and the books sold for each publisher. Now, using the OUTREC statement,
you can delete all the fields that are not needed for the application; in other words,
fields whose contents are not meaningful in a summation record. Only the pub-
lisher, number-in-stock, and number-sold fields are written, reducing the output
record length to 12 bytes.

To write the OUTREC statement:

Because the number-in-stock and number-sold fields are next to each other, you
can also specify them together as one field. They do not need to have the same
data format.

Table 23. Steps to Create the OUTREC Statement for Reformatting Records

Step Action

1 Leave at least one blank, and type OUTREC

2 Leave at least one blank, and type FIELDS=

3 Type, in parentheses, and separated by commas:

1. The location and length of the publisher field

2. The location and length of the number-in-stock field

3. The location and length of the number-sold field.

 Copyright IBM Corp. 1983, 1998 31

 Reformatting Records

Note that on the OUTREC statement you do not specify the data format.

 SORT FIELDS=(1ð6,4,CH,A)
 SUM FIELDS=(162,4,BI,166,4,BI)
 OUTREC FIELDS=(1ð6,4,162,4,166,4)

──┬── ──┬── ──┬──
│ │ └──────5 Number sold

 │ │
│ └────────────5 Number in stock

 │
 └──────────────────5 Publisher

Or:

 SORT FIELDS=(1ð6,4,CH,A)
 SUM FIELDS=(162,4,BI,166,4,BI)
 OUTREC FIELDS=(1ð6,4,162,8)
 ──┬── ──┬──

│ └─────5 Number in stock and number sold
 │
 └───────────5 Publisher

Note: If you use INREC or OUTREC to change the record length, be sure to
specify the final record length on the SORTOUT DD statement using the
DCB parameter (the DCB parameter is shown coded later in this chapter).
The final length is either:

� The INREC length if you are using just INREC

� The OUTREC length if you are using just OUTREC or both INREC and
OUTREC

For example, this change is required for the above statements:

//SORTOUT DD DSN=A123456.OUTF12,DISP=(NEW,CATLG,DELETE),
// SPACE=(CYL,(1,1)),UNIT=SYSDA,
// DCB=LRECL=12

Table 24 shows the output.

Table 24. Writing Only Publisher, Number In Stock, and Number Sold Fields

Publisher

Number
In Stock

Number
Sold

1 4 5 8 9 12

COR
FERN
VALD
WETH

 103
 19
 42
 62

 161
 87
 97
 79

Reordering Fields to Reserve Space
The fields always appear in the order in which you specify them. Therefore, if you
want the number sold to appear before the number in stock, as shown in Table 25
on page 33, you reverse their order on the OUTREC statement.

 SORT FIELDS=(1ð6,4,CH,A)
 SUM FIELDS=(162,4,BI,166,4,BI)
 OUTREC FIELDS=(1ð6,4,166,4,162,4)

32 Getting Started with DFSORT R14

 Reformatting Records

Table 25. Reordering the Fields

Publisher Number Sold Number In Stock

1 4 5 8 9 12

COR
FERN
VALD
WETH

 161
 87
 97
 79

 103
 19
 42
 62

Inserting Binary Zeros
Building on the last example, assume you want to reformat the records to include a
new 4-byte binary field after the number in stock (beginning at byte 13). In this
case, you can insert binary zeros as place holders for the new field (to be filled in
with data at a later date). You can use Z or 1Z to specify a single binary zero.

To insert the zeros, write 4Z after the last field:

 SORT FIELDS=(1ð6,4,CH,A)
 SUM FIELDS=(162,4,BI,166,4,BI)
 OUTREC FIELDS=(1ð6,4,166,4,162,4,4Z)

This time, you must specify on the SORTOUT DD statement that the new record
length is 16 bytes:

//SORTOUT DD DSN=A123456.OUTF16,DISP=(NEW,CATLG,DELETE),
// SPACE=(CYL,(1,1)),UNIT=SYSDA,
// DCB=LRECL=16

Table 26 shows the result.

Table 26. Inserting Binary Zeros

Publisher Number Sold Number In Stock X '0...0'

1 4 5 8 9 12 13 16

COR
FERN
VALD
WETH

 161
 87
 97
 79

 103
 19
 42
 62

 0...0
 0...0
 0...0
 0...0

 Inserting Blanks
If an output data set contains only character data, you can print it by writing the
SORTOUT DD statement as follows:

//SORTOUT DD SYSOUT=A

You can make the printout more legible by using the OUTREC statement to sepa-
rate the fields with blanks and to create margins. You can insert blanks before,
between, or after fields. You can use X or 1X to specify a single blank.

 Chapter 5. Reformatting Records 33

 Reformatting Records

For example, assume you want to print just the publisher and title fields, with the
publisher field appearing first. Because most of the publishers’ names fill up the
entire 4-byte publisher field, the publishers’ names will run into the titles if you do
not separate the two fields with blanks. Also, without a margin, the publishers’
names will begin at the edge of the paper.

The printout can be made more legible by separating the fields with 10 blanks and
creating a margin of 20 blanks.

To insert the blanks, specify 10X between the two fields, and 20X before the first
field. The SORT statement sorts the records by title in ascending order (remember
that SORT or MERGE is always required).

 SORT FIELDS=(1,75,CH,A)
 OUTREC FIELDS=(2ðX,1ð6,4,1ðX,1,75)

Table 27 shows the result.

Table 27. Output After Inserting Blanks

 Publisher Book Title

1 20 21 24 25 34 35 190

(20 Blanks)
FERN
FERN
WETH
COR
VALD
WETH
COR
VALD
COR
COR
COR
FERN
COR
VALD
VALD
COR
WETH
FERN
WETH
VALD

(10 Blanks)
ADVANCED TOPICS IN PSYCHOANALYSIS
COMPUTER LANGUAGES
COMPUTERS: AN INTRODUCTION
CRISES OF THE MIDDLE AGES
EDITING SOFTWARE MANUALS
EIGHTEENTH CENTURY EUROPE
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
INTRODUCTION TO BIOLOGY
INTRODUCTION TO PSYCHOLOGY
LIVING WELL ON A SMALL BUDGET
MODERN ANTHOLOGY OF WOMEN POETS
NUMBERING SYSTEMS
PICK’S POCKET DICTIONARY
SHORT STORIES AND TALL TALES
STRATEGIC MARKETING
SUPPLYING THE DEMAND
SYSTEM PROGRAMMING
THE COMPLETE PROOFREADER
THE INDUSTRIAL REVOLUTION
VIDEO GAME DESIGN

 Inserting Constants
In addition to making the printout more legible, OUTREC can also be used to set
up a very basic report format by inserting constants. ICETOOL's DISPLAY operator
or the OUTFIL control statement can be used to create complex reports as you will
see in later examples. The formats for writing constants are shown below.

34 Getting Started with DFSORT R14

 Reformatting Records

 Character Strings
The format for writing a character string is:

C'x...x'

where x is an EBCDIC character. For example, C'FERN'.

The format for writing character string repetition is:

nC'x...x'

where n can be from 1 to 4095; n repetitions of the character string constant
(C'x...x') are inserted into the reformatted input records. If n is omitted, 1 is used
instead.

If you want to include a single apostrophe in the string, you must specify it as two
single apostrophes. For example, O’NEILL must be specified as C'O''NEILL'.

 Hexadecimal Strings
The format for writing a hexadecimal string is:

X'yy...yy'

where yy is a pair of hexadecimal digits. For example, X'7FB0'.

The format for writing hexadecimal string repetition is:

X'yy...yy'

where n can be from 1 to 4095. n repetitions of the hexadecimal string constant
(X'yy...yy') are inserted in the reformatted input records. If n is omitted, 1 is used.

Setting Up the Report Format
To produce a very basic report of the publisher’s names and author’s names from
the bookstore data set, you can use OUTREC to put in “Publisher is” and “Author
is” as character separators.

To write the OUTREC statement:

 Chapter 5. Reformatting Records 35

 Reformatting Records

The statement is shown below:

Table 28. Steps to Write the OUTREC Statement

Step Action

1 Leave at least one blank, and type OUTREC

2 Leave at least one blank, and type FIELDS=

3 Type, in parenthesis:

1. The column you want the first term to start in, which is 11, followed by a
colon. The colon indicates column alignment, and must be followed by a
field or separator. OUTREC automatically inserts blanks before this column,
or from the end of the previous field up to this column.

2. The letter C.

3. The term Publisher is in single quotes and followed by a comma. Make
sure that there is one space after the is and before the single quote. Other-
wise, the first name will look like a continuation of the word is . (Alternatively,
you can use X for the space.)

4. The location (106) and length (4) of the publisher field, each followed by a
comma.

5. The column you want the second term to start in, which is 31, followed by a
colon.

6. The term Author is in single quotes (with an extra space), followed by a
comma.

7. The location (91) and length (15) of the author’s-first-name field, each fol-
lowed by a comma.

8. The letter X, for one blank, followed by a comma.

9. The location of the author’s-last-name field (76), followed by a comma, and
the length of the field (15).

 OPTION COPY
 OUTREC FIELDS=(11:C'Publisher is ',1ð6,4,
 31:C'Author is ',91,15,X,76,15)

The result is shown in Table 29 on page 37.

36 Getting Started with DFSORT R14

 Reformatting Records

 So Far

So far this chapter has covered how the OUTREC statement can define only
certain fields to go in the records of your output data set. This chapter has also
covered inserting binary zeros as place holders, and using blanks and constants
to make a printout of the output data set more readable.

Table 29. Output of a Report

 Publisher

Author's
First
Name

Author's
Last Name

1 10 11 22 24 27 31 39 41 55 57 71

(10 blanks) Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is
Publisher is

FERN
COR
COR
VALD
COR
WETH
COR
VALD
FERN
VALD
WETH
COR
COR
FERN
WETH
VALD
VALD
FERN
WETH
COR

Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is
Author is

 ROBERT
 FRANK
 TOM
 LORI
 KAREN
 JOKHI
 CAROL
 VICTOR
 WILLIAM
 MARK
 DON
 PETER
 LINDA
 ANN
 RAUL
 LILIANA
 CHIEN
 DIANNE
 ALICE
 GREG

MURRAY
DEWAN
MILLER
RASMUSSEN
WILDE
DINSHAW
GUSTLIN
OJALVO
BAYLESS
YAEGER
GROSS
COWARD
DUZET
GREEN
CAUDILLO
AVRIL
WU
OSTOICH
MUNGER
BENDER

Reformatting Records Before Sorting
The INREC statement has the same format as the OUTREC statement. Therefore,
in the first example of “Reformatting Records After Sorting” on page 31, where you
used OUTREC to write only the publisher, number-in-stock, and number-sold fields,
you could use INREC instead, as shown below.

 INREC FIELDS=(1ð6,4,162,4,166,4)
──┬── ──┬── ──┬──
│ │ └────5 Number sold

 │ │
│ └──────────5 Number in stock

 │
 └────────────────5 Publisher

Or:

 INREC FIELDS=(1ð6,4,162,8)
 ──┬── ──┬──

│ └───5 Number in stock and number sold
 │
 └─────────5 Publisher

 Chapter 5. Reformatting Records 37

 Reformatting Records

Using Other Statements with INREC
Because INREC reformats the records before they are sorted, the SORT and SUM
statements must refer to the reformatted records as they will appear in the output
data set.

Thus, after INREC, the input records for the control statement in the previous
section are 12 bytes long (see Table 24 on page 32 for an example).

You write the SORT and SUM statements to process the byte positions in the
output data set:

 INREC FIELDS=(1ð6,4,162,8)
 SORT FIELDS=(1,4,CH,A)
 SUM FIELDS=(5,4,BI,9,4,BI)

Table 30 shows the result.

As the flowchart in Appendix C, “Processing Order of Control Statements” on
page 121 shows, DFSORT processes the INREC statement before SORT, SUM,
and OUTREC, but after INCLUDE and OMIT. Therefore, when used with the
INREC statement, SORT, SUM, and OUTREC must refer to the reformatted
records, and INCLUDE and OMIT must refer to the original records.

DFSORT processes the OUTFIL statements after the INREC and OUTREC state-
ments. Therefore, OUTFIL must refer to the reformatted records produced by
OUTREC if specified, or to the reformatted records produced by INREC if it is spec-
ified without OUTREC.

Suppose you want to select and reformat specific records from the file shown in
Table 31:

Table 30. Using INREC to Write Only Publisher, Number in Stock, and Number Sold

Publisher

Number
In Stock

Number
Sold

1 4 5 8 9 12

COR
FERN
VALD
WETH

 103
 19
 42
 62

 161
 87
 97
 79

38 Getting Started with DFSORT R14

 Reformatting Records

From the complete data set, you want a copy of just the reading list (without the
prices) for the computer department.

Use the INCLUDE statement to select only departments equal to “COMP,” add the
INREC statement to include only the title and department fields, and use the
OPTION statement to specify the copy function. The statements look like this:

Table 31. Bookstore Data Set as a Source for a Copy Application

Book Title

Course
Department Price

1 75 110 114 170 173

LIVING WELL ON A SMALL BUDGET
PICK'S POCKET DICTIONARY
INTRODUCTION TO BIOLOGY
SUPPLYING THE DEMAND
STRATEGIC MARKETING
COMPUTER LANGUAGES
COMPUTERS: AN INTRODUCTION
NUMBERING SYSTEMS
SYSTEM PROGRAMMING
VIDEO GAME DESIGN
INKLINGS: AN ANTHOLOGY OF YOUNG POETS
EDITING SOFTWARE MANUALS
MODERN ANTHOLOGY OF WOMEN POETS
THE COMPLETE PROOFREADER
SHORT STORIES AND TALL TALES
THE INDUSTRIAL REVOLUTION
EIGHTEENTH CENTURY EUROPE
CRISES OF THE MIDDLE AGES
INTRODUCTION TO PSYCHOLOGY
ADVANCED TOPICS IN PSYCHOANALYSIS

BIOL
BUSIN
BUSIN
COMP
COMP
COMP
COMP
COMP
ENGL
ENGL
ENGL
ENGL
ENGL
HIST
HIST
HIST
PSYCH
PSYCH

 9900
 295
 2350
 1925
 2350
 2600
 1899
 360
 3195
 2199
 595
 1450
 450
 625
 1520
 795
 1790
 1200
 2200
 2600

 INCLUDE COND=(11ð,5,CH,EQ,C'COMP')
 INREC FIELDS=(1,114)
 OPTION COPY

Table 32 shows the copy of the data set.

Table 32. List of Computer Texts Copied from Bookstore Data Set

Book Title
Course Depart-
ment

1 75 110 114

COMPUTER LANGUAGES
COMPUTERS: AN INTRODUCTION
NUMBERING SYSTEMS
SYSTEM PROGRAMMING
VIDEO GAME DESIGN

COMP
COMP
COMP
COMP
COMP

 Chapter 5. Reformatting Records 39

 Reformatting Records

Preventing Overflow When Summing Values
In some cases, you can prevent overflow by using INREC to pad summary fields
with zeros. However, this method cannot be used for negative fixed-point binary
data, because padding with zeros rather than with ones would change the sign.

If the summary fields in Table 30 on page 38 were overflowing, you could pad
each of them on the left with 4 bytes (binary fields must be 2, 4, or 8 bytes long),
as shown in Table 33.

 INREC FIELDS=(1ð6,4,4Z,162,4,4Z,166,4)
 SORT FIELDS=(1,4,CH,A)
 SUM FIELDS=(5,8,BI,13,8,BI)
 ──┬─── ───┬───

│ └──────5 New number sold field
 │

└──────────────5 New number in stock field

Table 34 shows the output records, each 20 bytes long.

Note: You cannot use the OUTREC statement to prevent overflow, because it is
processed after summarization.

 Summary

This chapter covered using INREC and OUTREC to reformat data sets.
You can delete fields, insert blanks, zeros or constants, and reorder
fields with both of these control statements. These two control state-
ments help improve the appearance of your output.

Table 33. Padding Summary Fields

Publisher X '0...0'
Number In
Stock X '0...0' Number Sold

1 4 5 8 9 12 13 16 17 20

COR
FERN
VALD
WETH

 103
 19
 42
 62

 161
 87
 97
 79

Table 34. Padding Summary Fields

Publisher Number In Stock Number Sold

1 4 5 12 13 20

COR
FERN
VALD
WETH

 103
 19
 42
 62

 161
 87
 97
 79

40 Getting Started with DFSORT R14

 Using OUTFIL

Chapter 6. Creating Multiple Output Data Sets and Reports

You can create multiple output data sets and reports from a single pass over
sorted, merged, or copied input using OUTFIL control statements. With OUTFIL you
can:

� Create multiple output data sets from a single pass over the input data set.
These data sets can have the same or different records and field arrangements
because each OUTFIL statement can specify one or more OUTFIL ddnames
and can have its own INCLUDE or OMIT and OUTREC parameters as well as
report parameters.

� Create detailed reports with three levels (report, page, and section) of report
elements such as:

 – Headers
 – Trailers
 – Totals
 – Counts
 – Maximums
 – Minimums
 – Averages

– Page control via line counters

� Edit numeric fields to printable hexadecimal characters, or printable decimal
characters with thousands separator, decimal point, leading or suppressed
zeros, signs, and so on. You can select one or more of OUTFIL's twenty-six
pre-defined editing masks, or specify your own user-defined editing masks,
which allows virtually unlimited selection of numeric formats.

� Change fields that match selected character, hexadecimal, or bit constants to
selected character or hexadecimal constants. This provides a powerful function
for substituting meaningful names, words and phrases for otherwise cryptic
values.

� Create summary reports that show report elements such as headers, trailers
and statistics, but not the actual data records.

� Select sequential groups of records for output data sets (STARTREC and
ENDREC parameters), split records evenly between output data sets (SPLIT
parameter), and create fixed-length records from variable-length records
(CONVERT parameter). Examples with these parameters are not shown here,
but details can be found in Application Programming Guide.

All of the data sets specified for a particular OUTFIL statement are processed in a
similar way and thus are referred to as an OUTFIL group .

To better illustrate OUTFIL's capabilities, the last example in this chapter uses an
extra data set, SORT.SAMPADD, concatenated with SORT.SAMPIN, the data set
that was used in previous examples. Appendix B, “The Sample Bookstore Data
Sets” on page 117 and Appendix A, “Using the DFSORT Sample Data Sets” on
page 115 show you how to use the sample data sets and the contents of each
data set.

 Copyright IBM Corp. 1983, 1998 41

 Using OUTFIL

Creating Multiple Copies
Suppose you want to create backups for your data set; on DASD for the local site
and on tapes for the remote sites. You can do this by using OUTFIL and the
FNAMES parameter with an OPTION COPY statement. With the FNAMES param-
eter, you define the output data sets with unique DD statements in the JCL before
writing your DFSORT control statements. Sample JCL and the OPTION COPY
statement are shown below.

//COPY JOB A492,PROGRAMMER
//SORT EXEC PGM=SORT
//STEPLIB DD DSN=A492.SM,DISP=SHR
//SYSOUT DD SYSOUT=A
//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//BACKUP DD DSN=A123456.BOOKS.BACKUP,DISP=OLD
//NEWYORK DD DSN=BOOKS,UNIT=349ð,DISP=(,KEEP),VOL=SER=REMOT1,LABEL=(,SL)
//SANJOSE DD DSN=BOOKS,UNIT=349ð,DISP=(,KEEP),VOL=SER=REMOT2,LABEL=(,SL)
//SYSIN DD \
 OPTION COPY

Note: The JCL above includes two tape data sets. Substitute your own tape data
set information if you want to run this example.

To write the OUTFIL statement:

The OUTFIL statement is shown below:

Table 35. Creating the OUTFIL Statement for the Multiple Output Data Set Job

Step Action

1 Leave at least one blank and type OUTFIL

2 Leave at least one blank and type FNAMES=

3 Type, in parentheses and separated by commas, each output data set DD
name. In this example, they are BACKUP , NEWYORK, and SANJOSE .

 OUTFIL FNAMES=(BACKUP,NEWYORK,SANJOSE)
/\

This statement specifies three backup copies of your data set: one on-site DASD
and two tapes that can be sent to remote sites.

| You can also complete this task using the FILES parameter of OUTFIL. With
| FILES, you assign SORTOFd or SORTOFdd DD statements instead of naming
| unique DD statements. Sample JCL and DFSORT control statements using FILES
| are shown below.

42 Getting Started with DFSORT R14

 Using OUTFIL

//COPY JOB A492,PROGRAMMER
//SORT EXEC PGM=SORT
//STEPLIB DD DSN=A492.SM,DISP=SHR
//SYSOUT DD SYSOUT=A
//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//SORTOF1 DD DSN=A123456.BOOKS.BACKUP,DISP=OLD
//SORTOF2 DD DSN=BOOKS,UNIT=349ð,DISP=(,KEEP),VOL=SER=REMOT1
//SORTOF3 DD DSN=BOOKS,UNIT=349ð,DISP=(,KEEP),VOL=SER=REMOT2
//SYSIN DD \
 OPTION COPY
 OUTFIL FILES=(1,2,3)
/\

Both FNAMES and FILES create the same output, but FNAMES lets you keep
track of your data more easily by defining specific DD names instead of one or two
suffix characters. FNAMES is used in all of the multiple output examples in the rest
of this chapter.

Creating Multiple Output Data Sets with Unique Content
You can use INCLUDE or OMIT as OUTFIL parameters to create multiple output
data sets with unique content. While INCLUDE and OMIT statements apply to all
input records, the INCLUDE and OMIT parameters only apply to records received
by OUTFIL from previous DFSORT processing (such as SORT and INCLUDE
control statements). These records are the OUTFIL input records. In addition, dif-
ferent INCLUDE or OMIT parameters can be used with each OUTFIL statement.

Any logical expression that is valid for the COND parameter of the INCLUDE or
OMIT control statement is valid for the corresponding parameter. However, you can
not specify FORMAT= with the INCLUDE and OMIT parameters as you can with
the control statements.

In this example, the bookstore data set is sorted by title and the books for each
department are included in separate output data sets. The books that don't belong
to any department are placed in a separate data set using the SAVE parameter.
The SAVE parameter operates in a global fashion over all of the other OUTFIL
statements for which SAVE is not specified and allows you to keep any OUTFIL
input records that would not be kept otherwise. The new OUTFIL parameters used
in this example are:

INCLUDE selects the records to be included in the data sets for this OUTFIL group
(OMIT selects the records to be omitted from the data sets for this
OUTFIL group)

SAVE specifies that OUTFIL input records not included for any other OUTFIL
group are to be included in the data sets for this OUTFIL group

To write the OUTFIL statements for this job:

 Chapter 6. Creating Multiple Output Data Sets and Reports 43

 Using OUTFIL

The JCL and DFSORT control statements for this example are shown below.

Table 36. Creating the OUTFIL Statement for the Unique Output Data Set Job

Step Action

1 Leave at least one blank and type OUTFIL

2 Leave at least one blank and type FNAMES=

3 Type the name of your output data set definition and a comma

4 Type INCLUDE=

5 Type, in parentheses and separated by commas:

1. The location of the department field

2. The length of the department field

3. The data format of the department field

4. The comparison operator EQ

5. The character constant for the department; for example, C'ENGL'

6 Repeat steps 1-5 for each department

7 For the books without an entry in the department field, repeat only steps 1-3.
Then type SAVE.

//MULTI JOB A492,PROGRAMMER
//SORT EXEC PGM=SORT
//STEPLIB DD DSN=A492.SM,DISP=SHR
//SYSOUT DD SYSOUT=A
//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//ENGL DD DSN=A123456.SORT.ENGL,DISP=OLD
//BIOL DD DSN=A123456.SORT.BIOL,DISP=OLD
//BUSIN DD DSN=A123456.SORT.BUSIN,DISP=OLD
//COMP DD DSN=A123456.SORT.COMP,DISP=OLD
//HIST DD DSN=A123456.SORT.HIST,DISP=OLD
//PSYCH DD DSN=A123456.SORT.PSYCH,DISP=OLD
//EXTRA DD DSN=A123456.SORT.EXTRA,DISP=OLD
//SORTWKð1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSIN DD \
 SORT FIELDS=(1,75,CH,A)
 OUTFIL FNAMES=ENGL,INCLUDE=(11ð,5,CH,EQ,C'ENGL')
 OUTFIL FNAMES=BIOL,INCLUDE=(11ð,5,CH,EQ,C'BIOL')
 OUTFIL FNAMES=BUSIN,INCLUDE=(11ð,5,CH,EQ,C'BUSIN')
 OUTFIL FNAMES=COMP,INCLUDE=(11ð,5,CH,EQ,C'COMP')
 OUTFIL FNAMES=HIST,INCLUDE=(11ð,5,CH,EQ,C'HIST')
 OUTFIL FNAMES=PYSCH,INCLUDE=(11ð,5,CH,EQ,C'PSYCH')
 OUTFIL FNAMES=EXTRA,SAVE
/\

This example only shows one way to use INCLUDE as a parameter with OUTFIL.
For a more detailed look at the many ways INCLUDE and OMIT can be used, see
Chapter 3, “Tailoring the Input Data Set with INCLUDE and OMIT” on page 21.

44 Getting Started with DFSORT R14

 Using OUTFIL

 So Far

So far, you have learned how to copy to multiple output data sets and to create
multiple output data sets with unique content using OUTFIL, FNAMES, FILES,
INCLUDE, and SAVE. Next, you will learn about creating reports with DFSORT.

Creating Reports: ICETOOL vs OUTFIL
Both the OUTFIL statement and ICETOOL's DISPLAY operator can be used to
create reports. While each performs some reporting functions that the other does
not, in general the difference between them is one of control and effort. With
OUTFIL, you have more control over the appearance of reports, but considerable
effort may be required on your part to specify in detail where every piece of infor-
mation is to appear in the report and how it is to look. With ICETOOL, much of the
work of determining where information is to appear in the report and how it is to
look is done for you, but you have less control over the appearance of the reports.

ICETOOL should be your primary choice for creating reports since it is easier to
use than OUTFIL. But remember that OUTFIL is available if you need any of its
specific reporting features, or more control of the appearance of reports than
ICETOOL gives you. See Chapter 10, “Using the ICETOOL Utility” on page 73 for
examples of using DISPLAY to create reports.

Using OUTFIL to Create Reports
You can use OUTFIL to format your output into an easy-to- read report by using:

� The OUTREC parameter to arrange your OUTFIL input records as data records
for the report

� Report parameters (HEADER1, TRAILER1, HEADER2, TRAILER2, SECTIONS,
NODETAIL and LINES) to include report elements such as titles, column
headings, totals, counts, maximums, minimums, and averages, in report
records for the report. This example does not use HEADER1, TRAILER2,
SECTIONS or NODETAIL, but details of these parameters (as well as all other
OUTFIL parameters and subparameters) can be found in Application Program-
ming Guide.

You can include any or all of these in your report:

� A cover sheet (report header)
� A header at the top of each page (page header)
� A trailer at the bottom of each page (page trailer)
� A header at the start of each section (section header)
� A trailer at the start of each section (section trailer)
� A summary sheet (report trailer)

While the OUTREC statement applies to all input records, the OUTREC parameter
only applies to the OUTFIL input records. Different OUTREC parameters can be
used with each OUTFIL statement, as can different headers, trailers, and so on.

All of the fields and separators that are valid for the FIELDS parameter of the
OUTREC statement are also valid for the OUTREC parameter. However, the

 Chapter 6. Creating Multiple Output Data Sets and Reports 45

 Using OUTFIL

OUTREC parameter offers additional features such as edit masks, edit patterns,
and table lookup and change, that are not available with the OUTREC statement.

The new OUTFIL parameters used in this example are:

LINES specifies the number of lines per page to be used for the report
(the default is 60 lines per page)

HEADER2 specifies a header that appears at the top of each page of the
report, except for the cover sheet and summary sheet

OUTREC specifies how the records in the data sets for this OUTFIL group
are to be reformatted as data records for the report

TRAILER2 specifies a trailer that appears by itself as the last page of the
report

When you create an OUTFIL report, the length for the data records must be equal
to or greater than the maximum report record length. You can use the OUTREC
parameter to force a length for the data records that is longer than any report
record by adding a blank to the data records at a point beyond the report record
length. For example, if your data records are 40 bytes, but your longest report
record is 60 bytes, you could use an OUTREC parameter such as:

OUTREC=(1,4ð,8ð:X)

You can also use the OUTREC parameter to convert numeric fields to printable
hexadecimal characters, or printable decimal characters with sign control (for
example, + for positive numbers and − or () for negative numbers) and editing
control (for example, commas every n digits, decimal point, leading $, suppressed
or non-suppressed leading zeros, and so on). You can edit BI, FI, PD, ZD, and
FS/CSF format fields using either the pre- defined M0-M25 edit mask subparame-
ters or specific edit patterns you define with the EDIT subparameter. You can use
the M0 edit mask automatically by specifying a format without a specific edit mask
or edit pattern.

The 26 pre-defined edit masks can be represented as follows:

Table 37 (Page 1 of 3). Edit Mask Patterns

Mask Pattern Examples

Value Result

M0 IIIIIIIIIIIIIITS +01234 1234

-00001 1-

M1 TTTTTTTTTTTTTTTS -00123 00123-

+00123 00123

M2 I,III,III,III,IIT.TTS +123450 1,234.50

-000020 0.20-

M3 I,III,III,III,IIT.TTCR -001234 12.34CR

+123456 1,234.56

M4 SI,III,III,III,IIT.TT +0123456 +1,234.56

-1234567 -12,345.67

46 Getting Started with DFSORT R14

 Using OUTFIL

Table 37 (Page 2 of 3). Edit Mask Patterns

Mask Pattern Examples

Value Result

M5 SI,III,III,III,IIT.TTS -001234 (12.34)

+123450 1,234.50

M6 III-TTT-TTTT 00123456 012-3456

12345678 1-234-56788

M7 TTT-TT-TTTT 00123456 000-12-3456

12345678 012-34-5678

M8 IT:TT:TT 030553 3:05:53

121736 12:17:36

M9 IT/TT/TT 123094 12/30/94

083194 8/31/94

M10 IIIIIIIIIIIIIIT 01234 1234

00000 0

M11 TTTTTTTTTTTTTTT 00010 00010

01234 01234

M12 SIII,III,III,III,IIT +1234567 1,234,567

-0012345 -12,345

M13 SIII.III.III.III.IIT +1234567 1.234.567

-0012345 -12.345

M14 SIII III III III IITS +1234567 1 234 567

-0012345 (12 345)

M15 III III III III IITS +1234567 1 234 567

-0012345 12 345-

M16 SIII III III III IIT +1234567 1 234 567

-0012345 -12 345

M17 SIII'III'III'III'IIT +1234567 1'234'567

-0012345 -12'345

M18 SI,III,III,III,IIT.TT +0123456 1,234.56

-1234567 -12,345.67

M19 SI.III.III.III.IIT,TT +0123456 1.234,56

-1234567 -12.345,67

M20 SI III III III IIT,TTS +0123456 1 234,56

-1234567 (12 345,67)

M21 I III III III IIT,TTS +0123456 1 234,567

-1234567 12 345,67-

M22 SI III III III IIT,TT +0123456 1 234,56

-1234567 -12 345,67

 Chapter 6. Creating Multiple Output Data Sets and Reports 47

 Using OUTFIL

Table 37 (Page 3 of 3). Edit Mask Patterns

Mask Pattern Examples

Value Result

M23 SI'III'III'III'IIT.TT +0123456 1'234.56

-1234567 -12'345.67

M24 SI'III'III'III'IIT,TT +0123456 1'234,56

-1234567 -12'345,67

M25 SIIIIIIIIIIIIIIT +01234 1234

-00001 -1

The elements used in the representation of the edit masks in Table 37 on page 46
are as follows:

� I indicates a leading insignificant digit. If zero, this digit will not be shown.

� T indicates a significant digit. If zero, this digit will be shown.

� CR (in M3) is printed to the right of the digits if the value is negative; otherwise,
two blanks are printed to the right of the digits.

� S indicates a sign. If it appears as the first character in the pattern, it is a
leading sign. If it appears as the last character in the pattern, it is a trailing
sign. The examples in Table 37 on page 46 show the applicable positive and
negative signs for each edit mask.

� Any other character (for example, /) will be printed as shown.

You can also use these elements to specify your own patterns in the EDIT subpa-
rameter. For example,

EDIT=(IIT.T)

Edit masks and edit patterns can be used for data fields (OUTREC parameter) and
for statistics (TOTAL, SUBTOTAL, MAX, SUBMAX, MIN, SUBMIN, AVG, and
SUBAVG subparameters) in trailers, as you will see in this example.

Another OUTREC feature used in this example is table lookup and change. This
feature allows you to look up a field in your OUTFIL input records in a table of
character, hexadecimal or bit constants, and change those that match to another
specified character or hexadecimal constant. This means that you can substitute
meaningful words or phrases for cryptic values (for example, READ can be substi-
tuted for R, EMPTY can be substituted for X'FF' or VSAM can be substituted for
bit 1 = 0). In this example, the table lookup and change feature is used to substi-
tute the full names of publishers for their abbreviations.

To give you an overview of how the report is specified, all of the JCL and control
statements for this example are shown below. Note that the input consists of two
data sets concatenated together and that we are using only the first 50 characters
of the Book Title field.

48 Getting Started with DFSORT R14

 Using OUTFIL

//REPORT JOB A492,PROGRAMMER
//SORT EXEC PGM=SORT
//STEPLIB DD DSN=A492.SM,DISP=SHR
//SYSOUT DD SYSOUT=A
//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
// DD DSN=A123456.SORT.SAMPADD,DISP=SHR
//BOOKLIST DD SYSOUT=A
//SORTWKð1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSIN DD \
 SORT FIELDS=(1,5ð,CH,A)
 OUTFIL FNAMES=BOOKLIST,LINES=4ð,
 HEADER2=(2:'BOOKSTORE LIST',
 5ð:'DATE: ',DATE,
 82:'PAGE: ',PAGE,
 3/,5:'BOOK TITLE',
 6ð:'PUBLISHER',
 85:'PRICE ($)',
 /,5:5ð'-',
 6ð:15'-',
 85:9'-'),
 OUTREC=(5:1,5ð,
 6ð:1ð6,4,
 CHANGE=(15,
 C'FERN',C'FERNALL BROS.',
 C'COR',C'CORNISH LTD.',

C'VALD',C'VALDERN AND CO.',
 C'WETH',C'WETHMAN INC.'),
 NOMATCH=(C'UNKNOWN'),
 8ð:17ð,4,BI,M18,
 133:X),

TRAILER1=(2:'SUMMARY FOR ',DATE,
 82:'PAGE: ',PAGE,

3/,2:'BOOKS IN STOCK: ',COUNT,
3/,2:'AVERAGE PRICE OF BOOKS IN STOCK: ',

 AVG=(17ð,4,BI,EDIT=($I,IIT.TT)))
/\

The steps explaining the OUTFIL statement are divided into four sections to make
them easier to understand.

Using the FNAMES and LINES Parameters
This section describes how to use the FNAMES parameter to identify the ddname
of the OUTFIL data set and the LINES parameter to control the report page length.

Step Action

1 Leave at least one blank and type OUTFIL.

2 Leave at least one blank and type FNAMES=BOOKLIST followed by a comma.

3 Type LINES= and the number of lines per page for the report, which is 40, fol-
lowed by a comma.

 OUTFIL FNAMES=BOOKLIST,LINES=4ð,

 Chapter 6. Creating Multiple Output Data Sets and Reports 49

 Using OUTFIL

Using the HEADER2 Parameter
This section describes how to use the HEADER2 parameter to define the contents
of the page header that will appear at the top of each page of the report, except for
the summary sheet. For our example, the page header consists of several lines,
including a title line identifying a title for the report and the date and page number,
and appropriate underlined headings for the columns of data.

Step Action

4 On the next line, leave at least one blank and type HEADER2=

50 Getting Started with DFSORT R14

 Using OUTFIL

Step Action

5 Type, in parentheses and separated by commas, the following:

1. The column you want the first title string to start in, which is 2, followed by a
colon.

2. The title string 'BOOKSTORE LIST' in single quotes.

3. On the next line, the column you want the second title string to start in,
which is 50, followed by a colon. You may have to iteratively run the report
job and adjust the column values until you get the report looking the way
you want it to.

4. The title string 'DATE: ' in single quotes.

5. The subparameter DATE to request the current date.

6. On the next line, the column you want the third title string to start in, which
is 82, followed by a colon.

7. The title string 'PAGE: ' in single quotes.

8. The subparameter PAGE to request the current page number.

9. On the next line, 3/ to insert two blank lines before the column headings. n/
results in n-1 blank lines in the report.

10. The column you want the first column heading to start in, which is 5, fol-
lowed by a colon.

11. The column heading 'BOOK TITLE' in single quotes.

12. On the next line, the column you want the second column heading to start
in, which is 60, followed by a colon.

13. The column heading 'PUBLISHER' in single quotes.

14. On the next line, the column you want the third column heading to start in,
which is 85, followed by a colon.

15. The column heading 'PRICE ($)' in single quotes.

16. On the next line, / to start a new line in the report.

17. The column you want the first column underlining to start in, which is 5 (the
same as that used for the first column heading), followed by a colon.

18. The number of dashes needed to underline the first column heading, which
is 50 from the length of the Book Title field, followed by - in single quotes.

19. On the next line, the column you want the second column underlining to
start in, which is 60, followed by a colon.

20. The number of dashes needed to underline the second column heading,
which is 15 from the length of the substituted Publisher names (see
CHANGE below), followed by - in single quotes.

21. On the next line, the column you want the third column underlining to start
in, which is 85, followed by a colon.

22. The number of dashes needed to underline the third column heading, which
is 9 from the length of the third column heading, followed by - in single
quotes. You may have to iteratively run the report job to determine the width
of certain columns, especially for edited numbers.

 Chapter 6. Creating Multiple Output Data Sets and Reports 51

 Using OUTFIL

 HEADER2=(2:'BOOKSTORE LIST',
 5ð:'DATE: ',DATE,
 82:'PAGE: ',PAGE,
 3/,5:'BOOK TITLE',
 6ð:'PUBLISHER',
 85:'PRICE ($)',
 /,5:5ð'-',
 6ð:15'-',
 85:9'-'),

Using the OUTREC Parameter
This section describes how to use the OUTREC parameter to arrange your
selected input fields as columns of data for the report.

52 Getting Started with DFSORT R14

 Using OUTFIL

Step Action

6 On the next line, leave at least one blank and type OUTREC=

7 Type, in parentheses, and separated by commas, the following:

1. The column you want the Book Title to start in, which is 5, followed by a
colon.

2. The location (1) and length (50) of the Book Title field. Although the full
Book Title field is 75 characters, we are only using the first 50 characters of
the field here.

3. On the next line, the column you want the expanded Publisher field to start
in, which is 60, followed by a colon.

4. The location (106) and length (4) of the Publisher field.

5. On the next line, the subparameter CHANGE= which describes your lookup
and change table. OUTFIL's lookup and change feature can be used in
many ways in output records and reports to substitute meaningful words and
phrases for cryptic character, hexadecimal and bit values.

6. Type, in parentheses, and separated by commas, the following:

a. The length for the expanded Publisher field, which is 15.

b. On the next line, the lookup table to convert the Publisher field to the
expanded Publisher field, which consists of a character constant for
each expected input field value (for example, C'FERN') followed by a
character constant for the associated output field value (for example,
C'FERNALL BROS.').

7. On the next line, the subparameter NOMATCH= which indicates the action
to be taken for an unexpected input value. Use the NOMATCH feature to
identify invalid or unexpected values in your report. If you don't specify
NOMATCH, DFSORT issues a message and terminates for an unexpected
value.

8. Type, in parentheses, the character constant for an unexpected input field
value, which is C'UNKNOWN' .

9. On the next line, the column you want the edited Price field to start in, which
is 80, followed by a colon.

10. The location (170), length (4), format (BI) and edit mask (M18) for the Price
field.

11. On the next line, the column you want the report and data records to end in,
which is 133, followed by a colon and X to indicate one blank. This ensures
that your data records are at least as long as your report records.

 OUTREC=(5:1,5ð,
 6ð:1ð6,4,
 CHANGE=(15,
 C'FERN',C'FERNALL BROS.',
 C'COR',C'CORNISH LTD.',

C'VALD',C'VALDERN AND CO.',
 C'WETH',C'WETHMAN INC.'),
 NOMATCH=(C'UNKNOWN'),
 8ð:17ð,4,BI,M18,
 133:X),

 Chapter 6. Creating Multiple Output Data Sets and Reports 53

 Using OUTFIL

Using the TRAILER1 Parameter
This section describes how to use the TRAILER1 parameter to define the contents
of the summary page.

Step Action

8 On the next line, leave at least one blank and type TRAILER1=

9 Type, in parentheses and separated by commas, the following:

1. The column you want the summary title to start in, which is 2, followed by a
colon.

2. The summary title 'SUMMARY FOR ' in single quotes.

3. The subparameter DATE to request the current date.

4. The column you want the page string to start in, which is 82, followed by a
colon, the title string 'PAGE: ' in single quotes, and the subparameter PAGE
to request the current page number.

5. On the next line, 3/ to insert two blank lines before the count line.

6. The column you want the count line to start in, which is 2, followed by a
colon.

7. The count line title 'BOOKS IN STOCK: ' in single quotes.

8. The subparameter COUNT to request a count of the number of data records
in the report.

9. On the next line, 3/ to insert two blank lines before the average line.

10. The column you want the average line to start in, which is 2, followed by a
colon.

11. The average line title 'AVERAGE PRICE OF BOOKS IN STOCK: ' in single
quotes.

12. On the next line, the subparameter AVG= to request the average of the
book prices.

13. Type, in parentheses and separated by commas, the location (170), length
(4), format (BI) and edit pattern (EDIT=($I,IIT.TT)) for the Price field.

TRAILER1=(2:'SUMMARY FOR ',DATE,
 82:'PAGE: ',PAGE,

3/,2:'BOOKS IN STOCK: ',COUNT,
3/,2:'AVERAGE PRICE OF BOOKS IN STOCK: ',

 AVG=(17ð,4,BI,EDIT=($I,IIT.TT)))

This example creates the following three-page report:

54 Getting Started with DFSORT R14

 Using OUTFIL

 BOOKSTORE LIST DATE: ð3/ð7/95 PAGE: 1

 BOOK TITLE PUBLISHER PRICE ($)
 -- --------------- ---------

A SMALLER WORLD: MICROBES FERNALL BROS. 19.95
ADVANCED TOPICS IN PSYCHOANALYSIS FERNALL BROS. 26.ðð
ANOTHER ITALIAN DICTIONARY CORNISH LTD. 9.25
ANTICIPATING THE MARKET WETHMAN INC. 2ð.ðð
CELLS AND HOW THEY WORK VALDERN AND CO. 24.95
CIVILIZATION SINCE ROME FELL WETHMAN INC. 13.5ð
COMPLETE SPANISH DICTIONARY VALDERN AND CO. 6.5ð

 COMPUTER LANGUAGES FERNALL BROS. 26.ðð
COMPUTERS: AN INTRODUCTION WETHMAN INC. 18.99
CRISES OF THE MIDDLE AGES CORNISH LTD. 12.ðð

 DESIGNING APPLICATIONS CORNISH LTD. 14.35
DNA: BLUEPRINT FOR YOU FERNALL BROS. 21.95
EDITING SOFTWARE MANUALS VALDERN AND CO. 14.5ð
EIGHTEENTH CENTURY EUROPE WETHMAN INC. 17.9ð
FRENCH TO ENGLISH DICTIONARY FERNALL BROS. 11.ðð
FREUD'S THEORIES VALDERN AND CO. 12.5ð
GUIDE TO COLLEGE LIFE WETHMAN INC. 2ð.ðð
GUNTHER'S GERMAN DICTIONARY WETHMAN INC. 1ð.88
INKLINGS: AN ANTHOLOGY OF YOUNG POETS CORNISH LTD. 5.95
INTRODUCTION TO BIOLOGY VALDERN AND CO. 23.5ð
INTRODUCTION TO PSYCHOLOGY CORNISH LTD. 22.ðð
KNOW YOUR CONSUMER CORNISH LTD. 45.ðð
LIVING WELL ON A SMALL BUDGET CORNISH LTD. 99.ðð
MAP OF THE HUMAN BRAIN CORNISH LTD. 8.95
MODERN ANTHOLOGY OF WOMEN POETS CORNISH LTD. 4.5ð
NOVEL IDEAS VALDERN AND CO. 24.5ð

 NUMBERING SYSTEMS FERNALL BROS. 3.6ð
PICK'S POCKET DICTIONARY CORNISH LTD. 2.95
POLITICS AND HISTORY FERNALL BROS. 9.95

 QUEUE THEORY FERNALL BROS. 15.ðð
REBIRTH FROM ITALY WETHMAN INC. 25.6ð
SHORT STORIES AND TALL TALES VALDERN AND CO. 15.2ð
STRATEGIC MARKETING VALDERN AND CO. 23.5ð
SUPPLYING THE DEMAND CORNISH LTD. 19.25

 SYSTEM PROGRAMMING WETHMAN INC. 31.95

 BOOKSTORE LIST DATE:ð3/ð7/95 PAGE: 2

 BOOK TITLE PUBLISHER PRICE ($)
 -- --------------- ---------

THE ANIMAL KINGDOM CORNISH LTD. 3ð.ðð
THE ART OF TAKEOVERS FERNALL BROS. 6.15
THE COMPLETE PROOFREADER FERNALL BROS. 6.25
THE INDUSTRIAL REVOLUTION WETHMAN INC. 7.95
THE TOY STORE TEST CORNISH LTD. 26.ðð
VIDEO GAME DESIGN VALDERN AND CO. 21.99
ZEN BUSINESS VALDERN AND CO. 12.ðð

 SUMMARY FOR ð3/ð7/95 PAGE: 3

 BOOKS IN STOCK: 42

 AVERAGE PRICE OF BOOKS IN STOCK: $18.83

 Chapter 6. Creating Multiple Output Data Sets and Reports 55

 Using OUTFIL

 Summary

This chapter covered how to use OUTFIL to:

� Create multiple copies
� Create multiple output data sets with unique content

 � Create reports

The next chapter will cover methods of calling DFSORT from a program.

56 Getting Started with DFSORT R14

 Calling DFSORT from a Program

Chapter 7. Calling DFSORT from a Program

This chapter contains Programming Interface information.

In addition to processing your DFSORT program control statements with a JCL
EXEC statement, you can call DFSORT from programs written in COBOL, PL/I, or
assembler language. In this chapter, you will concentrate on sorting and merging
using COBOL and sorting using PL/I. The examples in this chapter assume that the
COBOL environment is available.

For information on restrictions when using these languages and on calling DFSORT
from an assembler program, see Application Programming Guide.

Passing Control Statements
When using COBOL, or PL/I, you can pass the INCLUDE, OMIT, SUM, INREC,
OUTREC, and OUTFIL control statements to DFSORT by using the SORTCNTL
DD or DFSPARM DD statement. These program products create a RECORD
control statement and a SORT or MERGE control statement for you. For example,
you can use the SORTCNTL DD statement to pass the INCLUDE control statement
that selects only the English department books:

//EXAMP JOB A492,PROGRAMMER
 .
 .
 .
//SORTCNTL DD \
 INCLUDE COND=(11ð,5,CH,EQ,C'ENGL')
/\

The SYSIN DD statement is not used for passing control statements. Instead,
control statements are passed by the SORTCNTL DD or DFSPARM DD statement.

When using VS COBOL II, COBOL for MVS & VM or COBOL for OS/390 & VM,
you need to understand the use of the SORT-CONTROL and SORT-RETURN
special registers. For full information, see the COBOL Programmer's Guide that
describes the compiler version available at your site.

Calling DFSORT from a COBOL Program
To call DFSORT from a COBOL program, use the COBOL statements SORT and
MERGE. This section shows sample programs that use the COBOL SORT and
MERGE statements. For complete information, see the COBOL Programmer's
Guide describing the compiler version available at your site.

 Sorting Records
The sample COBOL program in Figure 2 on page 59 calls DFSORT to sort the
bookstore master file (MASTER-FILE) by title in ascending order. The sorted
master file is written to SORTED-MASTER-FILE.

Following is the JCL that calls the sample COBOL program:

 Copyright IBM Corp. 1983, 1998 57

 Calling DFSORT from a Program

//EXAMP JOB A492,PROGRAMMER
//BOOKS EXEC PGM=COBOLPGM
//STEPLIB DD DSN=A492.SM,DISP=SHR
// DD DSN=USER.PGMLIB,DISP=SHR
//SYSOUT DD SYSOUT=A
//MASTIN DD DSN=A123456.MASTER,DISP=OLD
//SORTWKð1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//MASTOUT DD DSN=A123456.OUTB,DISP=(NEW,CATLG,DELETE),
// SPACE=(CYL,(1,1)),UNIT=SYSDA
//PRINTFL DD SYSOUT=A
/\

In contrast to the JCL for executing DFSORT with the JCL EXEC statement (see
“Sorting Data Sets with the JCL EXEC Statement” on page 15) the above JCL has
these differences:

� The program name on the EXEC statement is that of the COBOL program.

� The STEPLIB DD statement defines the library containing the DFSORT
program, as well as the library containing the COBOL program.

� The name of the DD statement for the input file need not be SORTIN.

� The name of the DD statement for the output file need not be SORTOUT.

Notice that the control field and order of the sort are specified in the COBOL
program itself rather than with a SORT control statement. Figure 2 on page 59
shows the sample COBOL program.

58 Getting Started with DFSORT R14

 Calling DFSORT from a Program

 IDENTIFICATION DIVISION.
 PROGRAM-ID.
 COBOLPGM.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.

SELECT SD-FILE ASSIGN TO
 DUMMYNM.

SELECT MASTER-FILE ASSIGN TO
 MASTIN.

SELECT SORTED-MASTER-FILE ASSIGN TO
 MASTOUT.

SELECT PRINT-FILE ASSIGN TO
 PRINTFL.
 DATA DIVISION.
 FILE SECTION.
 SD SD-FILE

DATA RECORD IS SD-RECORD.
 ð1 SD-RECORD.
 ð5 TITLE-IN PICTURE X(75).
 ð5 AUTH-LN-IN PICTURE X(15).
 ð5 AUTH-FN-IN PICTURE X(15).
 ð5 PUB-IN PICTURE X(4).
 ð5 COUR-DEPT-IN PICTURE X(5).
 ð5 COUR-NO-IN PICTURE X(5).
 ð5 COUR-NAM-IN PICTURE X(25).
 ð5 INST-LN-IN PICTURE X(15).
 ð5 INST-INIT-IN PICTURE X(2).
ð5 NO-STOCK-IN PICTURE 9(8) COMP.
ð5 NO-SOLD-IN PICTURE 9(8) COMP.
ð5 PRICE-IN PICTURE 9(8) COMP.

Figure 2 (Part 1 of 2). Sample COBOL Program with SORT Commands

 Chapter 7. Calling DFSORT from a Program 59

 Calling DFSORT from a Program

 FD MASTER-FILE
DATA RECORD IS MASTER-RECORD.

 ð1 MASTER-RECORD.
 ð5 FILLER PICTURE X(173).

 FD SORTED-MASTER-FILE
DATA RECORD IS SORTED-MASTER-RECORD.

 ð1 SORTED-MASTER-RECORD.
 ð5 FILLER PICTURE X(173).

 FD PRINT-FILE
DATA RECORD IS OUTPUT-REPORT-RECORD.

 ð1 OUTPUT-REPORT-RECORD.
 ð5 REPORT-OUT PICTURE X(12ð).
 .
 .
 .

 PROCEDURE DIVISION.
 .
 .
 .

 SORT-ROUTINE SECTION.
 SORT SD-FILE

ASCENDING KEY TITLE-IN
 USING MASTER-FILE
 GIVING SORTED-MASTER-FILE.

IF SORT-RETURN > ð
DISPLAY "SORT FAILED".

 .
 .
 .
SORT-REPORT SECTION.

print a report on PRINT-FILE using SORTED-MASTER-FILE.
 .
 .
 .
 STOP RUN.

Figure 2 (Part 2 of 2). Sample COBOL Program with SORT Commands

 Merging Records
The sample COBOL program in Figure 3 on page 62 calls DFSORT to merge the
presorted bookstore master file (MASTER-FILE) with another presorted file (NEW-
BOOKS-FILE) to create a new master file (MERGED-FILE).

The JCL for the program is as follows:

60 Getting Started with DFSORT R14

 Calling DFSORT from a Program

//EXAMP JOB A492,PROGRAMMER
//BOOKS EXEC PGM=COBOLP
//STEPLIB DD DSN=A492.SM,DISP=SHR
// DD DSN=USER.PGMLIB,DISP=SHR
//SYSOUT DD SYSOUT=A
//MASTERFL DD DSN=A123456.MASTER,DISP=OLD
//NEWBOOKS DD DSN=A123456.NEW,DISP=OLD
//MERGEDFL DD DSN=A123456.OUTC,DISP=(NEW,CATLG,DELETE),
// SPACE=(CYL,(1,1)),UNIT=SYSDA
/\

Figure 3 on page 62 shows the sample COBOL program.

 Chapter 7. Calling DFSORT from a Program 61

 Calling DFSORT from a Program

 IDENTIFICATION DIVISION.
 PROGRAM-ID.
 COBOLP.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.

SELECT SD-FILE ASSIGN TO
 DUMMYNM.

SELECT MASTER-FILE ASSIGN TO
 MASTERFL.

SELECT NEW-BOOKS-FILE ASSIGN TO
 NEWBOOKS.

SELECT MERGED-FILE ASSIGN TO
 MERGEDFL.
 DATA DIVISION.
 FILE SECTION.
 SD SD-FILE

DATA RECORD IS SD-RECORD.
 ð1 SD-RECORD.
 ð5 TITLE-KEY PICTURE X(75).
 ð5 FILLER PICTURE X(98).

 FD MASTER-FILE
DATA RECORD IS MASTER-RECORD.

 ð1 MASTER-RECORD.
 ð5 FILLER PICTURE X(173).

 FD NEW-BOOKS-FILE
DATA RECORD IS NEW-BOOKS-RECORD.

 ð1 NEW-BOOKS-RECORD.
 ð5 FILLER PICTURE X(173).

 FD MERGED-FILE
DATA RECORD IS MERGED-RECORD.

 ð1 MERGED-RECORD.
 ð5 FILLER PICTURE X(173).
 .
 .
 .

 PROCEDURE DIVISION.
 .
 .
 .

 MERGE-ROUTINE SECTION.
 MERGE SD-FILE

ASCENDING KEY TITLE-KEY
USING MASTER-FILE NEW-BOOKS-FILE

 GIVING MERGED-FILE.
IF SORT-RETURN > ð
DISPLAY "MERGE FAILED".

 STOP RUN.

Figure 3. Sample COBOL Program with MERGE Commands

62 Getting Started with DFSORT R14

 Calling DFSORT from a Program

Sorting with COBOL FASTSRT
If you compile the COBOL program in Figure 3 on page 62 for sorting records with
VS COBOL II, COBOL for MVS & VM, or COBOL for OS/390 & VM, the input (from
MASTER-FILE) and the output (to SORTED-MASTER-FILE) would qualify for the
COBOL FASTSRT option. With this compile-time FASTSRT option, your sort runs
considerably faster, because DFSORT rather than COBOL does the input and
output processing. For full information on FASTSRT, refer to Application Program-
ming Guide and the COBOL Programmer's Guide that describes the compiler
version available at your site.

Note: COBOL evaluates sort input and output independently to see if it qualifies
for FASTSRT. If either the input or the output of your sort does not qualify
because of the presence of an input or output procedure, you might be able
to replace such a procedure and use DFSORT control statements to
accomplish the same thing. For example, you can use a control statement
(OUTREC) to indicate how records will be reformatted before being written
to the output data set.

Calling DFSORT from a PL/I Program
When calling DFSORT, a PL/I program must pass a SORT control statement, a
RECORD control statement, and the amount of main storage to be allocated to
DFSORT. On the RECORD control statement, you specify the record type and
length. Following the RECORD control statement, you specify the amount of main
storage in bytes. (DFSORT performs best when the main storage value is at least 1
megabyte.)

You can also pass control statements by using the SORTCNTL DD statement.

This JCL is for the program shown in Figure 4 on page 64. The SORTCNTL DD
statement is used to pass an INCLUDE control statement that selects only the
English department books.

//EXAMP JOB A492,PROGRAMMER
//BOOKS EXEC PGM=PLIPGM
//STEPLIB DD DSN=A492.SM,DISP=SHR
// DD DSN=USER.PGMLIB,DISP=SHR
//SYSOUT DD SYSOUT=A
//SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//SORTWKð1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SORTOUT DD DSN=A123456.SORT.SAMPOUT,DISP=OLD
// SPACE=(CYL,(1,1)),UNIT=SYSDA
//SORTCNTL DD \
 INCLUDE COND=(11ð,5,CH,EQ,C'ENGL')
//SYSPRINT DD SYSOUT=A
/\

The sample PL/I program shown in Figure 4 on page 64 calls DFSORT to sort the
bookstore file by title. It allocates 2 000 000 bytes of main storage.

 Chapter 7. Calling DFSORT from a Program 63

 Calling DFSORT from a Program

PLIPGM: PROC OPTIONS(MAIN);

DCL 1 MASTER_RECORD,
 5 TITLE_IN CHAR(75),
 5 AUTH_LN_IN CHAR(2ð),
 .
 .
 .
 5 PRICE_IN BIN FIXED(31);

DCL RETURN_CODE FIXED BIN(31,ð);
 .
 .
 .

CALL PLISRTA (' SORT FIELDS=(1,75,CH,A) ',
' RECORD TYPE=F,LENGTH=(173) ',

 2ðððððð,
 RETURN_CODE);

IF RETURN_CODE ⅛= ð THEN DO;
PUT SKIP EDIT ('SORT FAILED')(A);

 CALL PLIRETC(RETURN_CODE);
 END;
 .
 .
 .
 CALL OUTPUT;
 .
 .
 .
 OUTPUT: PROCEDURE;
 .
 .
 .

. Print a report from the sorted master file (SORTOUT)
 .
 .
 .
 END;
END PLIPGM;

Figure 4. Sample PL/I Program with SORT Commands

 Summary

This chapter covered methods of calling DFSORT from COBOL, and PL/I.

64 Getting Started with DFSORT R14

 Overriding Installation Defaults

Chapter 8. Overriding Installation Defaults

IBM provides DFSORT with pre-set defaults. During installation, your system pro-
grammer can change these defaults. For example, one IBM-supplied default is to
list the DFSORT control statements in the output data set for messages. However,
at your site, the default might be to not list the control statements.

Furthermore, you can establish separate defaults for jobs executed with JCL and
those called from a program. So, when you execute DFSORT with JCL, the default
might be to list the statements, and when you call DFSORT from a program, the
default might be to not list them.

You can temporarily override some of the installation defaults either by specifying
parameters on the JCL EXEC statement or by writing an OPTION control state-
ment. When calling DFSORT from an Assembler program, you can also override
defaults by using a parameter list.

In this chapter, you will learn how to override some of the many available defaults,
concentrating on the JCL EXEC statement and the OPTION control statement. For
a list of all the possible defaults, and information on how to code the assembler
parameter list, see Application Programming Guide See also Chapter 10, “Using
the ICETOOL Utility” on page 73 on using the ICETOOL DEFAULTS parameter to
print a list of your installation defaults.

Specifying PARM Parameters on a JCL EXEC Statement
While executing DFSORT with the JCL EXEC statement, you can use the PARM
parameter to override certain defaults. For example, if the default at your site is to
list DFSORT statements and you do not want them listed, you can specify NOLIST
in the PARM field:

//SORT EXEC PGM=SORT,PARM='NOLIST'

On the other hand, if the default is not to list the statements and you do want them
listed, you can specify LIST in the PARM field:

//SORT EXEC PGM=SORT,PARM='LIST'

Writing an OPTION Control Statement
Whether you execute DFSORT with the JCL EXEC statement or call it from a
program, you can use the OPTION statement to override certain defaults. To do so,
place the OPTION statement among the other DFSORT control statements that
follow the SYSIN or SORTCNTL DD statement.

A particular default that can be overridden with the OPTION statement is one that
specifies whether equally collating records are to be written in their original order.

The IBM default is for DFSORT to write equally collating records in random order. If
your site has kept this default and you want to temporarily override it (so that

 Copyright IBM Corp. 1983, 1998 65

 Overriding Installation Defaults

equally collating records are written in their original order), you can specify
EQUALS on the OPTION statement:

 OPTION EQUALS

Or, if your site has established EQUALS as the default and you want to temporarily
override it (so that equally collating records are written in random order), you can
specify NOEQUALS on the OPTION statement:

 OPTION NOEQUALS

Note that some defaults can be overridden by the OPTION control statement, but
not the JCL EXEC statement, and that other defaults can be overridden by the JCL
EXEC statement, but not the OPTION control statement.

For a table showing all defaults and exactly how each can be overridden, see
Application Programming Guide.

Specifying DFSPARM Parameters
PARM options and DFSORT control statements can also be specified with the
DFSPARM DD statement to override installation options. See Application Program-
ming Guide for more information.

 Summary

This chapter covered methods of overriding the installation defaults using a JCL
EXEC statement or an OPTION control statement.

66 Getting Started with DFSORT R14

 Using DFSORT Efficiently

Chapter 9. Using DFSORT Efficiently

You will get the best performance from DFSORT if you follow these guidelines:

� Be generous with main storage.
� Use high-speed disks or Hiperspace for work space.
� Eliminate unnecessary fields with INREC.
� Eliminate unnecessary records with INCLUDE or OMIT.
� Reduce file size with STOPAFT and SKIPREC.
� Consolidate records with SUM.
� Create multiple output data sets with OUTFIL
� Run DFSORT with the JCL EXEC statement.
� Use FASTSRT with COBOL.
� Avoid options that might degrade performance.

Additional suggestions can be found in Application Programming Guide and Tuning
Guide.

Be Generous with Main Storage
In general, the more main storage available to DFSORT, the better the perform-
ance. This is especially true when the input data set is larger than available main
storage.

When DFSORT was installed, your system programmer selected a default value for
main storage to be used for all jobs at your site. The main storage value is reported
as the SIZE value in the DFSORT messages. If the default storage value is less
than about 1 megabyte (1024K), you might want to make it larger when you sort
large data sets.

You can use SIZE=nM in the PARM field of the JCL EXEC statement to change
the storage value. For example:

//SORT EXEC PGM=SORT,PARM='SIZE=2M'

Alternatively, you can use MAINSIZE=nM on the OPTION statement to change the
storage value. For example:

 OPTION MAINSIZE=2M

Use High–Speed DASD or Hiperspace
Using high-speed DASD, such as the IBM 3390, or Hiperspace (through DFSORT's
Hipersorting capability) for work space offers the best performance. You should
avoid using tapes for work space whenever possible.

 Copyright IBM Corp. 1983, 1998 67

 Using DFSORT Efficiently

Eliminate Unnecessary Fields with INREC
If you need to reformat your records, using INREC to significantly shorten them can
result in faster processing.

Remember that INREC reformats records before they are processed, and OUTREC
reformats them after they are processed. Therefore, you should use INREC to
shorten records and OUTREC to lengthen records. For a summary of the control
statements and the corresponding record positions to refer to when using INREC,
see Table 38.

Table 38. Control Statement and Corresponding Records with INREC

Control
Statement

Original
Records

Reformatted
Records

SORT √
MERGE √
SUM √
OUTREC √
OUTFIL √
INCLUDE √
OMIT √

Eliminate Unnecessary Records with INCLUDE or OMIT
Naturally, the size of the input file(s) also affects the amount of time processing will
take. The fewer the records, the faster the DFSORT application. You can improve
performance by using INCLUDE or OMIT whenever possible to select only the
records pertaining to your application.

Reduce File Size with STOPAFT and SKIPREC
You can also use the STOPAFT and SKIPREC options to reduce the size of the
input file.

� Use STOPAFT to specify the maximum number of records that should be
accepted for sorting or copying.

� Use SKIPREC to skip a specified number of records at the beginning of the
input file being sorted or copied.

For information on how to use these options, see Application Programming Guide.

Consolidate Records with SUM
You can improve performance by using the SUM statement, if appropriate for your
job, to either:

� Add the contents of fields whenever two records with equal control fields are
found. DFSORT places the result in one record and deletes the other, reducing
the number of records to be sorted or merged.

� Delete records with duplicate control fields by specifying FIELDS=NONE in a
SUM statement.

68 Getting Started with DFSORT R14

 Using DFSORT Efficiently

For details on these methods, see Chapter 4, “Summing Records” on page 27.

Create Multiple Output Data Sets with OUTFIL
If you need to create multiple output data sets from the same input data set, you
can use OUTFIL to read the input data set only once, thus improving performance.
OUTFIL can be used for sort, merge, and copy applications to provide sophisticated
filtering, editing, conversion, lookup and replace, and report features.

Run DFSORT with JCL
As a rule, DFSORT is more efficient when executed with the JCL EXEC statement
than when called from a program.

Although calling DFSORT from a program might be convenient if the program modi-
fies the data sets before or after DFSORT (for example, if DFSORT sums numbers
and the program calculates their average), be aware of the possible trade-off in
performance.

Use FASTSRT with COBOL
With VS COBOL II, COBOL for MVS & VM and COBOL for OS/390 & VM, using
the FASTSRT compile-time option enhances DFSORT performance. With
FASTSRT, DFSORT rather than COBOL does the input and output processing. For
more information on this option, see the COBOL Programmer's Guide that
describes the compiler version available at your site.

Avoid Options That Might Degrade Performance
The options listed below might adversely affect DFSORT performance. Use them
only when necessary. For a full description of what these options are and how they
affect performance, see Application Programming Guide andTuning Guide.

 � VERIFY option
 � EQUALS option
 � NOBLKSET option
 � CKPT option
 � EQUCOUNT option
 � NOCINV option
 � LOCALE option
� Tape work data sets
� User exit routines

 � EFS program
� Dynamic link-edit of user exit routines
� Certain DEBUG options (BSAM, NOASSIST, NOCFW)
� Small values for HIPRMAX, DSPSIZE, or MAINSIZE options

 Summary

This chapter covered methods of improving DFSORT performance, including
the effective use of control statements and options.

 Chapter 9. Using DFSORT Efficiently 69

 Using DFSORT Efficiently

70 Getting Started with DFSORT R14

Part 3. Learning to Use ICETOOL

Chapter 10. Using the ICETOOL Utility . 73
ICETOOL Operators . 73
Input Data Sets . 74
Creating an ICETOOL Job . 75

Writing Required JCL Statements . 75
ICETOOL Comment and Blank Statements . 76
Printing Statistics For Numeric Fields . 77

Continuing an Operator Statement . 78
Statistics For Record Lengths . 79

Creating Identical Sorted Data Sets . 79
Creating Different Subsets of a Sorted Data Set 82
Creating Multiple Unsorted Data Sets . 84
Counting Values in a Range . 85
Printing Simple Reports . 87
Printing Tailored Reports . 88
Using Formatting Items . 90

Edit Masks . 90
Division . 92
Leading, Floating and Trailing Characters . 92

Printing Sectioned Reports . 93
Printing How Many Times Fields Occur . 96
Selecting Records by Field Occurrences . 97
Complete ICETOOL Job and TOOLMSG Output 98

 Copyright IBM Corp. 1983, 1998 71

72 Getting Started with DFSORT R14

Chapter 10. Using the ICETOOL Utility

ICETOOL is a multipurpose DFSORT utility that uses the capabilities of DFSORT to
perform multiple operations on one or more data sets in a single step.

This chapter will show you how to write an ICETOOL job that uses several of the
ICETOOL operators. To fully use the capabilities of ICETOOL, you should become
familiar with all of its operators, operands, and methods of invocation, as described
in Application Programming Guide and its messages and operator return codes as
described in Messages, Codes and Diagnosis.

 ICETOOL Operators
The twelve ICETOOL operators listed below can be used to perform a variety of
functions. By using various combinations of the twelve ICETOOL operators, you
can easily create applications that perform many complex tasks.

COPY Copies a data set to one or more output data sets.

COUNT Prints a message containing the count of records in a data set.

DEFAULTS Prints the DFSORT installation defaults in a separate list data set.

DISPLAY Prints the values or characters of specified numeric or character fields in
a separate list data set. Simple, tailored, or sectioned reports can be
produced.

MODE Three modes are available which can be set or reset for groups of
operators:

� STOP mode (the default) stops subsequent operations if an error is
detected.

� CONTINUE mode continues with subsequent operations if an error
is detected.

� SCAN mode allows ICETOOL statement checking without actually
performing any operations.

OCCUR Prints each unique value for specified numeric or character fields and
how many times it occurs in a separate list data set. Simple or tailored
reports can be produced. The values printed can be limited to those for
which the value count meets specified criteria (for example, only dupli-
cate values or only non-duplicate values).

RANGE Prints a message containing the count of values in a specified range for
a specified numeric field in a data set.

SELECT Selects records from a data set for inclusion in an output data set based
on meeting criteria for the number of times specified numeric or char-
acter field values occur (for example, only duplicate values or only non-

| duplicate values). Records that are not selected can be saved in a
| separate output data set.

SORT Sorts a data set to one or more output data sets.

 Copyright IBM Corp. 1983, 1998 73

STATS Prints messages containing the minimum, maximum, average, and total
for specified numeric fields in a data set.

UNIQUE Prints a message containing the count of unique values for a specified
numeric or character field.

VERIFY Examines specified decimal fields in a data set and prints a message
identifying each invalid value found for each field.

Input Data Sets
Each ICETOOL operator (except DEFAULTS and MODE) requires an input data
set. The input data set used by one operator can be the same or different from the
input data set used by another operator. Thus, ICETOOL can process many data
sets in a single step.

This chapter uses as input data sets the branch office data set named
SORT.BRANCH, the sample bookstore data set named SORT.SAMPIN, and the
additional bookstore data set named SORT.SAMPADD. See “Creating Your Sample
Input and Output Data Sets” on page 8 for additional information about these
sample data sets. Two temporary data sets created by ICETOOL from
SORT.BRANCH are also used as input.

Note: This chapter also uses data sets other than SORT.BRANCH,
SORT.SAMPIN and SORT.SAMPADD. You can either create data sets from
scratch to match the ones used in the text, or else perform a similar exer-
cise on data sets you already have.

Table 39 shows the length and format of the fields in the branch office data set
(SORT.BRANCH).

Table 40 on page 75 shows the records in the branch office data set.

Table 39. Field Lengths and Formats for SORT.BRANCH

Field Length Data Format

City 15 CH
State 2 CH
Employees 4 ZD
Revenue 6 PD
Profit 6 PD

74 Getting Started with DFSORT R14

Appendix B, “The Sample Bookstore Data Sets” on page 117 shows the length,
format and contents of the fields in the records of the bookstore data sets
(SORT.SAMPIN and SORT.SAMPADD).

Table 40. Branch Office Data Set Records

City State Employees Revenue Profit

1 15 16 17 18 21 22 27 28 33

Los Angeles CA 32 22530 −4278
San Francisco CA 35 42820 6832
Fort Collins CO 22 12300 −2863
Sacramento CA 29 42726 8276
Sunnyvale CA 18 16152 −978
Denver CO 33 31876 6288
Boulder CO 32 33866 7351
Morgan Hill CA 15 18200 3271
Vail CO 19 23202 5027
San Jose CA 21 27225 8264
San Diego CA 22 32940 8275
Aspen CO 20 25800 5200

Creating an ICETOOL Job
An ICETOOL job consists of:

1. The JCL statements that are required for every ICETOOL job.

2. The operator statements indicating the operations to be performed by the
ICETOOL job.

3. The JCL statements that are required as a result of the specified operator
statements.

Writing Required JCL Statements
The first step in creating any ICETOOL job is to write the JCL that is always
required. Here is the required JCL for the job in this chapter:

//EXAMP JOB A492,PROGRAMMER
//TOOL EXEC PGM=ICETOOL,REGION=1ð24K
//STEPLIB DD DSN=A492.SM,DISP=SHR
//TOOLMSG DD SYSOUT=A
//DFSMSG DD SYSOUT=A
//TOOLIN DD \
<ICETOOL statements go here>

/\
<Additional JCL statements go here>

� The JOB statement signals the beginning of the job.

� The EXEC statement signals the beginning of the job step and tells the oper-
ating system to run the ICETOOL program. REGION=1024K is recommended.

� The STEPLIB statement defines the library containing DFSORT and ICETOOL
(generally the same library). If these programs are in a system library, you can
omit the STEPLIB statement.

 Chapter 10. Using the ICETOOL Utility 75

� The TOOLMSG statement defines the output data set for ICETOOL messages.

� The DFSMSG statement defines the output data set for DFSORT messages.

� The TOOLIN statement precedes the ICETOOL statements (comment, blank,
and operator statements). The ICETOOL statements you write must appear
after TOOLIN. The additional JCL statements you write can appear before the
TOOLIN statement or after the ICETOOL statements. In this ICETOOL job, the
additional JCL statements will be placed after the ICETOOL statements.

ICETOOL Comment and Blank Statements
Comment statements and blank statements can be placed anywhere among the
ICETOOL operator statements.

� Comment statements start with an asterisk (*) in column 1 and are printed
along with the ICETOOL operator statements.

� Blank statements contain blanks in columns 1-72 and are ignored since
ICETOOL prints blank lines where appropriate.

To write a blank statement and a comment statement for our example:

When complete, the TOOLIN statements look like this:

Table 41. Steps to Create a Blank Statement and a Comment Statement

Step Action

1 After the TOOLIN DD statement, skip one line.

2 Type an asterisk (*) in column 1 followed by the comment.

//TOOLIN DD \

\ Statistics from all branches
/\

For this ICETOOL job, a comment statement will be placed before each operator to
describe its function. Although not required, this is a good practice to follow.

 So Far

So far, you have been introduced to the basics of the ICETOOL utility. Now,
using the following tutorials, you can learn about some of the operators. Each of
the following sections contains a part of the same ICETOOL job, so that by the
end of the chapter, you will have created a complete ICETOOL job. At the end
of the chapter, there is a section that contains the complete job and its resulting
messages.

76 Getting Started with DFSORT R14

Printing Statistics For Numeric Fields
When working with data sets containing numeric fields, you may want statistical
information about one or more of those fields. You can use the STATS operator to
find the minimum, maximum, average, and total values of up to 10 specific numeric
fields.

To write a STATS statement that prints statistics for the employees, profit, and
revenue fields of the branch office data set:

When complete, the STATS operator statement looks like:

 STATS FROM(ALL) ON(18,4,ZD) ON(28,6,PD) ON(22,6,PD)
─┬─ ───┬─── ───┬─── ───┬───
│ │ │ └──5 Revenue

 │ │ │
 │ │ └──────────────5 Profit
 │ │
 │ └──────────────────────────5 Employees
 │

└────────────────────────────────────5 ddname of input data set

You must also write a DD statement for the A123456.SORT.BRANCH data set
using the ddname ALL and place it at the end of the job:

Table 42. Steps to Create the STATS Operator

Step Action

1 Type STATS after the comment statement (you can leave one or more blanks
before STATS if you like).

2 Leave at least one blank and type FROM(ALL)

FROM specifies the ddname (that is, the name of the DD statement) for the
input data set from which you want to print statistics. In this case ALL is the
ddname chosen, but you can use any valid 1-8 character ddname you like.

3 Leave at least one blank and type ON

ON defines a field for which you want to print statistics.

4 Type in parentheses, and separated by commas:

1. Where the employees field begins relative to the beginning of the input
record (the first position is byte 1). The employees field begins at byte 18.

2. The length of the employees field in bytes. The employees field is 4 bytes
long.

3. A code for the data format. The employees field contains zoned decimal
data which you specify as ZD.

5 Leave at least one blank and type ON

ON defines another field for which you want to print statistics. You can print sta-
tistics for up to 10 fields with one STATS statement. Specify the ON fields in the
same order in which you want their statistics to be printed.

6 Type in parentheses, and separated by commas the location (28), length (6),
and format (PD for packed decimal) of the profit field.

7 Leave at least one blank and type ON. Type in parentheses and separated by
commas, the location (22), length (6), and format (PD) of the revenue field.

Make sure that the statement is coded between columns 1 and 72.

 Chapter 10. Using the ICETOOL Utility 77

//ALL DD DSN=A123456.SORT.BRANCH,DISP=SHR

When complete the TOOLIN statements and ALL statement look like:

//TOOLIN DD \

\ Statistics from all branches
STATS FROM(ALL) ON(18,4,ZD) ON(28,6,PD) ON(22,6,PD)
/\
//ALL DD DSN=A123456.SORT.BRANCH,DISP=SHR

When this STATS operation is run, the results are placed in the TOOLMSG data
set. If you ran the ICETOOL job you created so far, the TOOLMSG output would
look like:

 ICE6ððI ð DFSORT ICETOOL UTILITY RUN STARTED

 ICE632I ð SOURCE FOR ICETOOL STATEMENTS: TOOLIN

 ICE63ðI ð MODE IN EFFECT: STOP

\ Statistics from all branches
STATS FROM(ALL) ON(18,4,ZD) ON(28,6,PD) ON(22,6,PD)

 ICE627I ð DFSORT CALL ððð1 FOR COPY FROM ALL TO E35 EXIT COMPLETED
 ICE628I ð RECORD COUNT: ððððððððððððð12
 ICE6ð7I ð STATISTICS FOR (18,4,ZD) :
 ICE6ð8I ð MINIMUM: +ððððððððððððð15, MAXIMUM: +ððððððððððððð35
 ICE6ð9I ð AVERAGE: +ððððððððððððð24, TOTAL : +ðððððððððððð298
 ICE6ð7I ð STATISTICS FOR (28,6,PD) :
 ICE6ð8I ð MINIMUM: -ððððððððððð4278, MAXIMUM: +ððððððððððð8276
 ICE6ð9I ð AVERAGE: +ððððððððððð4222, TOTAL : +ðððððððððð5ð665
 ICE6ð7I ð STATISTICS FOR (22,6,PD) :
 ICE6ð8I ð MINIMUM: +ðððððððððð123ðð, MAXIMUM: +ðððððððððð4282ð
 ICE6ð9I ð AVERAGE: +ðððððððððð27469, TOTAL : +ððððððððð329637
 ICE6ð2I ð OPERATION RETURN CODE: ðð

 ICE6ð1I ð DFSORT ICETOOL UTILITY RUN ENDED - RETURN CODE: ðð

Looking at the output, you will notice that:

� Message ICE628I gives the count of records processed.

� Messages ICE607I, ICE608I, and ICE609I give the numerical statistics for each
ON field specified in the order in which they were specified.

� A return code for each operator is given in message ICE602I and the highest
operator return code is given in message ICE601I.

Continuing an Operator Statement
If you cannot fit your STATS statement (or any other ICETOOL operator statement)
between columns 1 and 72 of a single line, you can continue it across multiple
lines. If you end a line with a dash (-) after the operator or any operand, the next
line is treated as a continuation. Any characters specified after the dash are
ignored.

Note that the operator and each operand must be completely specified on one line
(between columns 1 and 72).

For example:

78 Getting Started with DFSORT R14

STATS - this is the operator
FROM(ALL) - ALL is the ddname for

SORT.BRANCH
 ON(18,4,ZD)-
 ON(28,6,PD)-
 ON(22,6,PD)

Statistics For Record Lengths
When working with variable length record data sets, you can use the STATS oper-
ator to easily obtain the following information:

� The shortest record in the data set (minimum)
� The longest record in the data set (maximum)
� The average length of records in the data set (average)
� The total number of bytes in the data set (total)

ICETOOL provides the special ON(VLEN) field for printing these statistics. Specify
ON(VLEN) as you would any other ON field.

 So far

Now you know how to print statistics for numeric fields and record lengths. In
the next section, you will learn how to work with the ICETOOL SORT operator.

Creating Identical Sorted Data Sets
You can use ICETOOL's SORT operator to create sorted output data sets. A
single SORT operator can be used to create one output data set or up to 10 iden-
tical output data sets. Using INCLUDE or OMIT statements, you can select a
subset of the input records. Using INREC or OUTREC statements, you can rear-
range the fields of the input records. Using OUTFIL statements, you can create any
number of output data sets with different subsets of records or arrangements of
fields.

For this example, we will use both the sample bookstore data set (SORT.SAMPIN)
and the additional bookstore data set (SORT.SAMPADD) as input. To write a
SORT operator that selects the books from publishers VALD and WETH, sorts
them by publisher and title, and writes them to DASD and print data sets:

Table 43 (Page 1 of 2). Steps to Create the SORT Operator

Step Action

1 Write a comment statement (optional):

\ Books from VALD and WETH

2 Type SORT after the comment statement

3 Leave at least one blank and type FROM(BKS)

BKS specifies the ddname for the input data sets you want to sort.

 Chapter 10. Using the ICETOOL Utility 79

When complete, the SORT operator statement looks like:

 SORT FROM(BKS) TO(DAPUBS,PRPUBS) USING(SPUB)
 ─┬─ ──┬─── ──┬─── ─┬──

│ │ │ └──5 First four chars of ddname
│ │ │ of DFSORT control data set

 │ │ │
│ │ └───────────────5 ddname of second output data set

 │ │
│ └──────────────────────5 ddname of first output data set

 │
└───────────────────────────────5 ddname of input data set

To write the JCL statements that go with the SORT operator:

Table 43 (Page 2 of 2). Steps to Create the SORT Operator

Step Action

4 Leave at least one blank and type TO(DAPUBS,PRPUBS)

TO specifies the ddnames for the output data sets to contain the sorted subset
of records. You can create up to 10 identical output data sets of any type that
DFSORT allows (permanent, temporary, DASD, tape, print, etc).

In this case, DAPUBS is the ddname chosen for the temporary DASD data set
and PRPUBS is the ddname chosen for the print data set. You can use any
valid 1-8 character ddnames you like.

ICETOOL will automatically use OUTFIL to create both output data sets from a
single pass over the input data set.

5 Leave at least one blank and type USING(SPUB)

USING specifies the first four characters of the ddname for the data set con-
taining the DFSORT control statements. In this case, the four characters chosen
are SPUB, but you can use any four characters you like as long as they are
valid for a ddname. The last four characters of the ddname are always CNTL, so
in this case the full ddname is SPUBCNTL.

For the SORT operator, you must specify a SORT control statement in the
DFSORT control statement data set (SPUBCNTL) in order to tell DFSORT how
to sort the input data set. You can also specify additional DFSORT control state-
ments, like INCLUDE, OMIT, INREC, OUTREC and OUTFIL, as appropriate.

Table 44 (Page 1 of 2). Steps to Create JCL Statements for the SORT Operator

Step Action

1 Write DD statements for the input data sets and place them at the end of the job.
In order to "concatenate" the two input data sets together, you must leave the
ddname field blank in the second DD statement:

 //BKS DD DSN=A123456.SORT.SAMPIN,DISP=SHR
 // DD DSN=A123456.SORT.SAMPADD,DISP=SHR

2 Write DD statements for the DASD and print output data sets and place them at
the end of the job:

 //DAPUBS DD DSN=&&DSRT,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=SYSDA
 //PRPUBS DD SYSOUT=A

3 Write a DD statement for the DFSORT control statement data set and place it at
the end of the job:

 //SPUBCNTL DD \

80 Getting Started with DFSORT R14

When complete, the TOOLIN statements and DD statements for this SORT oper-
ator look like:

Table 44 (Page 2 of 2). Steps to Create JCL Statements for the SORT Operator

Step Action

4 Write the SORT control statement to sort the input data sets by publisher and
title, and the INCLUDE statement to select only the books by publishers VALD
and WETH, and place them after the SPUBCNTL statement:

 SORT FIELDS=(1ð6,4,A,1,75,A),FORMAT=CH
 INCLUDE COND=(1ð6,4,EQ,C'VALD',OR,1ð6,4,EQ,C'WETH'),
 FORMAT=CH

\ Books from VALD and WETH
SORT FROM(BKS) TO(DAPUBS,PRPUBS) USING(SPUB)
/\
//BKS DD DSN=A123456.SORT.SAMPIN,DISP=SHR
// DD DSN=A123456.SORT.SAMPADD,DISP=SHR
//DAPUBS DD DSN=&&DSRT,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=SYSDA
//PRPUBS DD SYSOUT=A
//SPUBCNTL DD \
 SORT FIELDS=(1ð6,4,A,1,75,A),FORMAT=CH
 INCLUDE COND=(1ð6,4,EQ,C'VALD',OR,1ð6,4,EQ,C'WETH'),
 FORMAT=CH
/\

Figure 5 on page 82 shows the Book Title and Publisher fields for the records as
they would appear in the resulting output data sets. The actual records contain all
of the fields.

 Chapter 10. Using the ICETOOL Utility 81

Book
Title Publisher
--
1 75 1ð6 1ð9
--
CELLS AND HOW THEY WORK VALD
COMPLETE SPANISH DICTIONARY VALD
EDITING SOFTWARE MANUALS VALD
FREUD'S THEORIES VALD
INTRODUCTION TO BIOLOGY VALD
NOVEL IDEAS VALD
SHORT STORIES AND TALL TALES VALD
STRATEGIC MARKETING VALD
VIDEO GAME DESIGN VALD
ZEN BUSINESS VALD
ANTICIPATING THE MARKET WETH
CIVILIZATION SINCE ROME FELL WETH
COMPUTERS: AN INTRODUCTION WETH
EIGHTEENTH CENTURY EUROPE WETH
GUIDE TO COLLEGE LIFE WETH
GUNTHER'S GERMAN DICTIONARY WETH
REBIRTH FROM ITALY WETH
SYSTEM PROGRAMMING WETH
THE INDUSTRIAL REVOLUTION WETH

Figure 5. Books from publishers VALD and WETH

Creating Different Subsets of a Sorted Data Set
If you want to create subsets of records from the same input data set, you can use
OUTFIL statements with a SORT or COPY operator. The OUTFIL statements
specify the ddnames of the output data sets, so the TO operand is not needed. All
of the features of OUTFIL are available through the SORT and COPY operators.

To write a SORT operator that creates separate DASD and tape data sets for the
branch offices in California, and those in Colorado, sorted by city:

When complete, the SORT operator statement looks like:

Table 45. Steps to Create the SORT Operator

Step Action

1 Write a comment statement (optional):

\ Separate output for California and Colorado branches

2 Type SORT after the comment statement

3 Leave at least one blank and type FROM(ALL)

ALL specifies the ddname for the input data set you want to sort. You can use
the same ddname that you used for A123456.SORT.BRANCH in the STATS
operator.

4 Leave at least one blank and type USING(CACO)

The CACOCNTL data set contains the SORT and OUTFIL statements.

82 Getting Started with DFSORT R14

 SORT FROM(ALL) USING(CACO)
 ─┬─ ───┬──
 │ │
 │ │

│ └───────────────────5 First four chars of ddname
│ of DFSORT control data set

 │
└───────────────────────────────5 ddname of input data set

To write the JCL statements that go with the SORT operator:

When complete, the TOOLIN statements and DD statements for this SORT oper-
ator look like:

Table 46. Steps to Create JCL Statements for the SORT Operator

Step Action

1 Write a DD statement for the DFSORT control statement data set and place it at
the end of the job:

 //CACOCNTL DD \

2 Write the SORT control statement to sort the input data set by city, the OUTFIL
statement to select only the California branches, and the OUTFIL statement to
select only the Colorado branches, and place them after the CACOCNTL
statement:

 SORT FIELDS=(1,15,CH,A)
 OUTFIL FNAMES=(CADASD,CATAPE),INCLUDE=(16,2,CH,EQ,C'CA')
 OUTFIL FNAMES=(CODASD,COTAPE),INCLUDE=(16,2,CH,EQ,C'CO')

3 Write DD statements for the DASD and tape output data sets and place them at
the end of the job:

 //CADASD DD DSN=&&CA,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=339ð
 //CATAPE DD DSN=CA.BRANCH,UNIT=348ð,VOL=SER=111111,
 // DISP=(NEW,KEEP),LABEL=(,SL)
 //CODASD DD DSN=&& CO,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=339ð
 //COTAPE DD DSN=CO.BRANCH,UNIT=348ð,VOL=SER=222222,
 // DISP=(NEW,KEEP),LABEL=(,SL)

\ Separate output for California and Colorado branches
SORT FROM(ALL) USING(CACO)
/\
//CACOCNTL DD \
 SORT FIELDS=(1,15,CH,A)
 OUTFIL FNAMES=(CADASD,CATAPE),INCLUDE=(16,2,CH,EQ,C'CA')
 OUTFIL FNAMES=(CODASD,COTAPE),INCLUDE=(16,2,CH,EQ,C'CO')
/\
//CADASD DD DSN=&&CA,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=339ð
//CATAPE DD DSN=CA.BRANCH,UNIT=348ð,VOL=SER=111111,
// DISP=(NEW,KEEP),LABEL=(,SL)
//CODASD DD DSN=&&CO,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=339ð
//COTAPE DD DSN=CO.BRANCH,UNIT=348ð,VOL=SER=222222,
// DISP=(NEW,KEEP),LABEL=(,SL)

Table 47 on page 84 shows the records as they would appear in the CADASD
data set (&&CA) and the CATAPE data set (CA.BRANCH) as a result of using the
first OUTFIL statement.

 Chapter 10. Using the ICETOOL Utility 83

Table 48 shows the records as they would appear in the CODASD data set
(&&CO) and the COTAPE data set (CO.BRANCH) as a result of using the second
OUTFIL statement.

Figure 8 on page 101 shows the complete TOOLMSG output.

 So Far

So far in this tutorial, you have learned how to print statistics for numeric fields
using the ICETOOL STATS operator, and how to sort an input data set and
create multiple output data sets using the ICETOOL SORT operator. Next, you
will learn about the COPY operator.

Table 47. Records for California Sorted by City

City State Employees Revenue Profit

1 15 16 17 18 21 22 27 28 33

Los Angeles CA 32 22530 −4278
Morgan Hill CA 15 18200 3271
Sacramento CA 29 42726 8276
San Diego CA 22 32940 8275
San Francisco CA 35 42820 6832
San Jose CA 21 27225 8264
Sunnyvale CA 18 16152 −978

Table 48. Records for Colorado Sorted by City

City State Employees Revenue Profit

1 15 16 17 18 21 22 27 28 33

Aspen CO 20 25800 5200
Boulder CO 32 33866 7351
Denver CO 33 31876 6288
Fort Collins CO 22 12300 −2863
Vail CO 19 23202 5027

Creating Multiple Unsorted Data Sets
If you want to create unsorted copies of an input data set, you can use the COPY
operator. The COPY operator does not require any DFSORT statements.
However, you can supply DFSORT statements (for example, INCLUDE, OMIT,
INREC, OUTREC, or OUTFIL) if appropriate.

Here are a couple of examples of COPY operator statements with their accompa-
nying JCL statements:

84 Getting Started with DFSORT R14

//TOOLIN DD \
COPY FROM(ALL) TO(D1,D2,D3)
COPY FROM(ALL) TO(P1) USING(COPY) /\

//ALL DD DSN=A123456.SORT.BRANCH,DISP=SHR
//D1 DD DSN=A123456.SORT.COPY1,DISP=OLD
//D2 DD DSN=A123456.SORT.COPY2,DISP=OLD
//D3 DD DSN=A123456.SORT.COPY3,DISP=OLD
//P1 DD SYSOUT=\
//COPYCNTL DD \
 INCLUDE COND=(16,2,CH,EQ,C'CA') /\

The first COPY operator creates identical copies of A123456.SORT.BRANCH in
A123456.SORT.COPY1, A123456.SORT.COPY2, and A123456.SORT.COPY3.

The second COPY operator prints the A123456.SORT.BRANCH records for the
branches in California. Note that only the character fields in the resulting printed
output will be readable. You will learn how to display numeric fields in readable
format later in this chapter.

Since copying is more efficient than sorting, you should use the COPY operator
rather than the SORT operator when possible.

 So Far

So far in this chapter you have learned about STATS, SORT, and COPY, three
important ICETOOL operators. The next tutorial shows you how to use the
RANGE operator.

Counting Values in a Range
You can use ICETOOL's RANGE operator to count the number of values for a par-
ticular numeric field that fall within a range you define. The range can be defined
with:

Operand Comparison

EQUAL Equal to a value

NOTEQUAL Not equal to a value

LOWER Less than a value

HIGHER Greater than a value

HIGHER and LOWER Greater than a value, but less than another value

To print a count of the number of California branches with profit greater than
−1500, but less than +8000, write the following RANGE statement:

 Chapter 10. Using the ICETOOL Utility 85

\ California branches profit analysis

 RANGE FROM(CADASD) ON(28,6,PD) HIGHER(-15ðð) LOWER(+8ððð)
 ──┬─── ───┬─── ──┬── ──┬──

│ │ │ └──5 Upper limit for range
 │ │ │

│ │ └───────────────5 Lower limit for range
 │ │
 │ └──────────────────────────────5 Profit
 │

└──5 ddname of input data set

The input data set defined by CADASD is the same data set you created earlier
(with the SORT operator) for the California branches. HIGHER(−1500) indicates
that you want to count values in the profit field that are greater than −1500, while
LOWER(+8000) indicates that you want to count values in the profit field that are
less than +8000. For a negative limit, you must specify a minus (−) sign before the
number. For a positive limit, you either specify a plus (+) sign before the number or
leave it out, therefore, HIGHER(8000) is the same as HIGHER(+8000).

To print a count of the number of branches (in California and Colorado) with less
than 32 employees, write the following RANGE statement:

\ Branches with less than 32 employees

 RANGE FROM(ALL) ON(18,4,ZD) LOWER(32)
 ─┬─ ───┬─── ┌─

│ │ └──5 Upper limit for range
 │ │
 │ └──────────────5 Employees
 │

└────────────────────────5 ddname of input data set

Since CADASD and ALL were previously defined, you don't need to add any new
JCL statements to the ICETOOL job.

When these RANGE operators are run, the results are placed in the TOOLMSG
data set. The TOOLMSG output produced for these RANGE operators would look
like:

\ California branches profit analysis
RANGE FROM(CADASD) ON(28,6,PD) HIGHER(-15ðð) LOWER(+8ððð)

 ICE627I ð DFSORT CALL ððð4 FOR COPY FROM CADASD TO E35 EXIT COMPLETED
 ICE628I ð RECORD COUNT: ðððððððððððððð7
 ICE631I ð NUMBER OF VALUES IN RANGE FOR (28,6,PD) : ðððððððððððððð3
 ICE6ð2I ð OPERATION RETURN CODE: ðð

\ Branches with less than 32 employees
RANGE FROM(ALL) ON(18,4,ZD) LOWER(32)

 ICE627I ð DFSORT CALL ððð5 FOR COPY FROM ALL TO E35 EXIT COMPLETED
 ICE628I ð RECORD COUNT: ððððððððððððð12
 ICE631I ð NUMBER OF VALUES IN RANGE FOR (18,4,ZD) : ðððððððððððððð8
 ICE6ð2I ð OPERATION RETURN CODE: ðð

Looking at the output, you will notice that:

� Message ICE628I gives the count of records processed.

86 Getting Started with DFSORT R14

� Message ICE631I gives the count of values in the specified range. There were
3 California branches with profit greater than −1500, but less than +8000, and 8
branches in all with less than 32 employees.

� A return code for each operator is given in message ICE602I.

 So Far

You have now learned how to count the number of values in a range for a par-
ticular field using the ICETOOL RANGE operator. Next, you will learn about the
DISPLAY operator.

Printing Simple Reports
Numeric fields are often in a format (binary, fixed-point, or decimal) that is not read-
able when printed. You can use ICETOOL's DISPLAY operator to print simple
reports showing numeric and character fields from an input data set in readable
form. The specified fields are printed in a list data set that you define. For numeric
fields, appropriate plus (+) and minus (−) signs are printed along with the decimal
value of each number.

To print a list data set showing the profit, employees, and city fields for the
Colorado branches, write the following DISPLAY operator:

\ Print profit, employees, and city for each Colorado branch

 DISPLAY FROM(CODASD) LIST(OUT) ON(28,6,PD) ON(18,4,ZD) ON(1,15,CH)
──┬─── ─┬─ ───┬─── ───┬─── ───┬───
│ │ │ │ └────5 City

 │ │ │ │
 │ │ │ └────────────────5 Employees
 │ │ │
 │ │ └────────────────────────────5 Profit
 │ │

│ └──────────────────────────────────────5 ddname of list data set
 │

└──5 ddname of input data set

The input data set defined by CODASD is the same data set you created earlier
(with the SORT operator) for the Colorado branches. LIST specifies the ddname for
the list data set you want the fields to be printed in. In this case, OUT is the
ddname chosen for the list data set, but you can use any valid 1-8 character
ddname you like. Specify the ON fields in the same order in which you want their
values to be printed in the list data set.

Since OUT has not been defined previously, you must add a JCL statement for it to
the end of the job:

//OUT DD SYSOUT=A

When this DISPLAY operator is run, the OUT data set that results looks like:

 Chapter 10. Using the ICETOOL Utility 87

(28,6,PD) (18,4,ZD) (1,15,CH)
+ððððððððððð52ðð +ððððððððððððð2ð Aspen
+ððððððððððð7351 +ððððððððððððð32 Boulder
+ððððððððððð6288 +ððððððððððððð33 Denver
-ððððððððððð2863 +ððððððððððððð22 Fort Collins
+ððððððððððð5ð27 +ððððððððððððð19 Vail

The values for profit, employees, and city are printed in separate columns across
the page with a header for each column at the top. If more than one page is
printed, DISPLAY puts the header at the top of each page. If you do not want the
header printed, you can use DISPLAY's NOHEADER operand to suppress it.

DISPLAY also has two special ON fields you can use:

� ON(VLEN) can be used for variable length record data sets to print the length
of each record.

� ON(NUM) can be used to print a relative record number for each record
(starting with 1).

Use the ON(VLEN) or ON(NUM) field just as you would any other ON field.

Printing Tailored Reports
The previous tutorial showed you how to print a simple listing of numeric and char-
acter fields using the DISPLAY operator. By using additional operands of DISPLAY,
you can create list data sets showing character and numeric fields in a variety of
tailored report formats. You can specify:

� Title elements (TITLE, DATE, PAGE, and TIME operands)
� Field headings (HEADER operand)
� Field formats (BLANK and PLUS operands, and formatting items)
� Statistics (TOTAL, AVERAGE, MAXIMUM and MINIMUM operands)
� Lines per page (LINES operand)

To print a report for the Colorado branches showing the city, profit and employee
fields with a title line, field headings, totals, averages and minimums, write the fol-
lowing DISPLAY operator:

88 Getting Started with DFSORT R14

\ Print a report for the Colorado branches
 DISPLAY FROM(CODASD) LIST(RPT) -
 ──────────┬───────────

└──────────────────────5 ddnames of data sets

 DATE TITLE('Colorado Branches Report') PAGE -
 ────────────────────┬──────────────────────

└────────────────────5 Title line elements

 HEADER('City') HEADER('Profit') HEADER('Employees') -
 ───────────────────────┬───────────────────────────

└─────────────────5 Field headings

 ON(1,15,CH) ON(28,6,PD) ON(18,4,ZD) BLANK -
 ────────────────┬────────────────── ──┬──

│ └──5 Alternate print format
 │
 └────────────────────────5 Fields

 TOTAL('Total') AVERAGE('Average') MINIMUM('Lowest')
 ──────────────────────┬────────────────────────────
 └──────────────────5 Statistics

CODASD is the ddname for the previously created Colorado branches data set.
RPT is the ddname for the list data set in which you want the report to be printed.

DATE, TITLE and PAGE indicate the elements to be included in the title line and
their placement. Specify these operands in the same order in which you want them
to be printed in the list data set.

Each HEADER indicates a heading to be used for the corresponding field. Specify
the ON fields and their corresponding HEADER strings in the same order in which
you want their values to be printed in the list data set. BLANK specifies that
numeric values are printed with blank for plus sign, - for minus sign and no leading
zeros. HEADER and BLANK also change the justification and column width for the
fields to produce a more report-like format.

TOTAL, AVERAGE and MINIMUM cause the indicated statistics to be produced at
the end of the report, identified by the specified strings.

Since RPT has not been defined previously, you must add a JCL statement for it at
the end of the job:

//RPT DD SYSOUT=A

When this DISPLAY operator is run, the RPT data set that results looks like:

 Chapter 10. Using the ICETOOL Utility 89

1ð/21/92 Colorado Branches Report - 1 -

City Profit Employees
--------------- ---------------- ----------------
Aspen 52ðð 2ð
Boulder 7351 32
Denver 6288 33
Fort Collins -2863 22
Vail 5ð27 19

Total 21ðð3 126

Average 42ðð 25

Lowest -2863 19

The title line and heading line are printed at the top of each page. The character
data is left-justified and the numeric data is right-justified with zeros suppressed.
The statistics are printed after the columns of data.

Using Formatting Items
The previous tutorial used the BLANK operand to change the way all numeric
values in the report are displayed. You can use formatting items to change the
appearance of individual numeric fields and their related statistics in the report, with
respect to separators, decimal point, decimal places, signs, division, and leading,
floating and trailing strings. Formatting items are written as part of the ON operand,
separated by commas, as follows: ON(p,m,f,formatting).

 Edit Masks
You can select from thirty-three pre-defined edit masks. The table below describes
the available masks and shows how the values 12345678 and -1234567 would be
printed for each mask. In the pattern:

� d is used to represent a decimal digit (0-9)

� w is used to represent a leading sign that will be blank for a positive value or -
for a negative value

� x is used to represent a trailing sign that will be blank for a positive value or -
for a negative value

� y is used to represent a leading sign that will be blank for a positive value or (
for a negative value

� z is used to represent a trailing sign that will be blank for a positive value or)
for a negative value

Table 49 (Page 1 of 2). Edit Mask Patterns

Mask Pattern 12345678 -1234567

A0 wddddddddddddddd 12345678 -1234567

A1 wddd,ddd,ddd,ddd,ddd 12,345,678 -1,234,567

A2 wddd.ddd.ddd.ddd.ddd 12.345.678 -1.234.567

A3 wddd ddd ddd ddd ddd 12 345 678 -1 234 567

90 Getting Started with DFSORT R14

To use the E1 edit mask for the Profit field in the previous report, just change
ON(28,6,PD) to ON(28,6,PD,E1). The resulting RPT data set then looks like:

Table 49 (Page 2 of 2). Edit Mask Patterns

Mask Pattern 12345678 -1234567

A4 wddd'ddd'ddd'ddd'ddd 12'345'678 -1'234'567

A5 ddd ddd ddd ddd dddx 12 345 678 1 234 567-

B1 wdd,ddd,ddd,ddd,ddd.d 1,234,567.8 -123,456.7

B2 wdd.ddd.ddd.ddd.ddd,d 1.234.567,8 -123.456,7

B3 wdd ddd ddd ddd ddd,d 1 234 567,8 -123 456,7

B4 wdd'ddd'ddd'ddd'ddd.d 1'234'567.8 -123'456.7

B5 wdd'ddd'ddd'ddd'ddd,d 1'234'567,8 -123'456,7

B6 dd ddd ddd ddd ddd,dx 1 234 567,8 123 456,7-

C1 wd,ddd,ddd,ddd,ddd.dd 123,456.78 -12,345.67

C2 wd.ddd.ddd.ddd.ddd,dd 123.456,78 -12.345,67

C3 wd ddd ddd ddd ddd,dd 123 456,78 -12 345,67

C4 wd'ddd'ddd'ddd'ddd.dd 123'456.78 -12'345.67

C5 wd'ddd'ddd'ddd'ddd,dd 123'456,78 -12'345,67

C6 d ddd ddd ddd ddd,ddx 123 456,78 12 345,67-

D1 wddd,ddd,ddd,ddd.ddd 12,345.678 -1,234.567

D2 wddd.ddd.ddd.ddd,ddd 12.345,678 -1.234,567

D3 wddd ddd ddd ddd,ddd 12 345,678 -1 234,567

D4 wddd'ddd'ddd'ddd.ddd 12'345.678 -1'234.567

D5 wddd'ddd'ddd'ddd,ddd 12'345,678 -1'234,567

D6 ddd ddd ddd ddd,dddx 12 345,678 1 234,567-

E1 yddd,ddd,ddd,ddd,dddz 12,345,678 (1,234,567)

E2 yddd.ddd.ddd.ddd.dddz 12.345.678 (1.234.567)

E3 yddd ddd ddd ddd dddz 12 345 678 (1 234 567)

E4 yddd'ddd'ddd'ddd'dddz 12'345'678 (1'234'567)

F1 yd,ddd,ddd,ddd,ddd.ddz 123,456.78 (12,345.67)

F2 yd.ddd.ddd.ddd.ddd,ddz 123.456,78 (12.345,67)

F3 yd ddd ddd ddd ddd,ddz 123 456,78 (12 345,67)

F4 yd'ddd'ddd'ddd'ddd.ddz 123'456.78 (12'345.67)

F5 yd'ddd'ddd'ddd'ddd,ddz 123'456,78 (12'345,67)

 Chapter 10. Using the ICETOOL Utility 91

1ð/21/92 Colorado Branches Report - 1 -

City Profit Employees
--------------- --------------------- ----------------
Aspen 5,2ðð 2ð
Boulder 7,351 32
Denver 6,288 33
Fort Collins (2,863) 22
Vail 5,ð27 19

Total 21,ðð3 126

Average 4,2ðð 25

Lowest (2,863) 19

 Division
You can select from six division items as follows:

� /K - divide by 1000
� /M - divide by 1000000 (1000*1000)
� /G - divide by 1000000000 (1000*1000*1000)
� /KB - divide by 1024
� /MB - divide by 1048576 (1024*1024)
� /GB - divide by 1073741824 (1024*1024*1024)

The Profit values from SORT.BRANCH would look as follows with
HEADER('Profit/(Loss) in K$') and ON(28,6,PD,E1,/K):

Profit/(Loss) in K$

 (4)
 6
 (2)
 8
 ð
 6
 7
 3
 5
 8
 8
 5

Leading, Floating and Trailing Characters
You can add floating characters to your numeric fields and add leading and trailing
characters to your numeric and character fields as follows:

� F'string' - a floating string to appear to the left of the first non-blank character
of the formatted numeric data.

� L'string' - a leading string to appear at the beginning of the character or
numeric data column.

92 Getting Started with DFSORT R14

� T'string' - a trailing string to appear at the end of the character or numeric data
column.

The Profit values from SORT.BRANCH would look as follows with HEADER('Profit')
and ON(28,6,PD,A1,F'$',T'**'):

 Profit

 $-4,278\\
 $6,832\\
 $-2,863\\
 $8,276\\
 $-978\\
 $6,288\\
 $7,351\\
 $3,271\\
 $5,ð27\\
 $8,264\\
 $8,275\\
 $5,2ðð\\

Printing Sectioned Reports
The previous tutorial showed you how to print tailored reports using the DISPLAY
operator. By using the BREAK operand of DISPLAY, you can create reports divided
into sections by a character or numeric break field on which you have previously
sorted. You can also specify a string for the break title (BTITLE operand) and sta-
tistics for the individual sections (BTOTAL, BAVERAGE, BMAXIMUM and
BMINIMUM operands).

For this example, we will use the data set with books from publishers VALD and
WETH, sorted by publisher and title, that we created previously. To print a report
with sections by publisher showing the title and price fields with a title line, field
headings, break title, break averages and totals, and overall averages and totals,
write the following DISPLAY operator:

 Chapter 10. Using the ICETOOL Utility 93

\ Print a report of books for individual publishers

 DISPLAY FROM(DAPUBS) LIST(SECTIONS) -
 ────────────┬──────────────

└───────────5 ddnames of data sets

TITLE('BOOKS FOR INDIVIDUAL PUBLISHERS') PAGE -
 ──────────────────┬──────────────────────────

└───────────5 Title line elements

HEADER('TITLE OF BOOK') ON(1,35,CH) -
 ──────────────────┬─────────────────

└───────────5 Heading and field

HEADER('PRICE OF BOOK') ON(17ð,4,BI,C1,F'$') -
 ──────────────────┬─────────────────────────

└───────────5 Heading and field

BTITLE('PUBLISHER:') BREAK(1ð6,4,CH) -
 ──────────┬───────── ───────┬───────

│ └─5 Break field
└───────────────────5 Break title

BAVERAGE('AVERAGE FOR THIS PUBLISHER') -
 ──────────────────┬───────────────────

└───────────5 Section average

BTOTAL('TOTAL FOR THIS PUBLISHER') -
 ──────────────────┬───────────────

└───────────5 Section total

AVERAGE('AVERAGE FOR ALL PUBLISHERS') -
 ──────────────────┬──────────────────

└───────────5 Overall average

TOTAL('TOTAL FOR ALL PUBLISHERS')
 ──────────────────┬──────────────

└───────────5 Overall total

DAPUBS is the ddname for the previously created VALD and WETH data set.
SECTIONS is the ddname for the list data set in which you want the report to be
printed.

TITLE and PAGE indicate the elements to be included in the title line and their
placement.

Each HEADER and ON pair indicate a field to be included in the report and the
heading to be used for it.

BTITLE indicates a string to be used for the break title and its placement (before or
after the break field). BREAK indicates the break field to be used to create
sections. BAVERAGE and BTOTAL indicate section statistics to be produced at the
end of each section.

AVERAGE and TOTAL indicate overall statistics to be produced at the end of the
report.

Since SECTIONS has not been defined previously, you must add a JCL statement
for it at the end of the job:

94 Getting Started with DFSORT R14

//SECTIONS DD SYSOUT=A

When this DISPLAY operator is run, the SECTIONS data set results in a three-
page report that looks as follows:

BOOKS FOR INDIVIDUAL PUBLISHERS - 1 -

PUBLISHER: VALD

TITLE OF BOOK PRICE OF BOOK
----------------------------------- ----------------------
CELLS AND HOW THEY WORK $24.95
COMPLETE SPANISH DICTIONARY $6.5ð
EDITING SOFTWARE MANUALS $14.5ð
FREUD'S THEORIES $12.5ð
INTRODUCTION TO BIOLOGY $23.5ð
NOVEL IDEAS $24.5ð
SHORT STORIES AND TALL TALES $15.2ð
STRATEGIC MARKETING $23.5ð
VIDEO GAME DESIGN $21.99
ZEN BUSINESS $12.ðð

AVERAGE FOR THIS PUBLISHER $17.91

TOTAL FOR THIS PUBLISHER $179.14

BOOKS FOR INDIVIDUAL PUBLISHERS - 2 -

PUBLISHER: WETH

TITLE OF BOOK PRICE OF BOOK
----------------------------------- ----------------------
ANTICIPATING THE MARKET $2ð.ðð
CIVILIZATION SINCE ROME FELL $13.5ð
COMPUTERS: AN INTRODUCTION $18.99
EIGHTEENTH CENTURY EUROPE $17.9ð
GUIDE TO COLLEGE LIFE $2ð.ðð
GUNTHER'S GERMAN DICTIONARY $1ð.88
REBIRTH FROM ITALY $25.6ð
SYSTEM PROGRAMMING $31.95
THE INDUSTRIAL REVOLUTION $7.95

AVERAGE FOR THIS PUBLISHER $18.53

TOTAL FOR THIS PUBLISHER $166.77

BOOKS FOR INDIVIDUAL PUBLISHERS - 3 -

TITLE OF BOOK PRICE OF BOOK
----------------------------------- ----------------------

AVERAGE FOR ALL PUBLISHERS $18.2ð

TOTAL FOR ALL PUBLISHERS $345.91

 Chapter 10. Using the ICETOOL Utility 95

 So Far

You have now learned how to print simple, tailored and sectioned reports using
the ICETOOL DISPLAY operator. Next, you will learn about the OCCUR oper-
ator.

Printing How Many Times Fields Occur
You can use ICETOOL's OCCUR operator to print a simple or tailored report
showing how many times different field values occur. You can list all of the values
in the data set or limit the listing to those values that occur:

� More than once, that is, duplicate values (ALLDUPS operand)
� Only once, that is, non-duplicate values (NODUPS operand)
� A specified number of times (EQUAL operand)
� More than a specified number of times (HIGHER operand)
� Less than a specified number of times (LOWER operand)

For this example, we will use the sample bookstore data set as input. To print a
report showing the number of different books in use from each publisher, write the
following OCCUR statement:

\ Print the count of books in use from each publisher
 OCCUR FROM(BKIN) LIST(PUBCT) BLANK -
 ──────────┬─────────── ──┬──

│ └──────5 Alternate print format
 │

└─────────────────────5 ddnames of data sets

 TITLE('Books from Publishers') DATE(DMY.) -
 ───────────────────┬─────────────────────

└─────────────────────5 Title line elements

 HEADER('Publisher') HEADER('Books in Use') -
 ───────────────────┬──────────────────────

└─────────────────────5 Field headings

 ON(1ð6,4,CH) ON(VALCNT)
 ───────────┬───────────

└─────────────────────────────5 Publisher and Count

BKIN is the ddname for the sample bookstore data set. PUBCT is the ddname for
the list data set in which you want the report to be printed. BLANK specifies the
field format to be used.

TITLE indicates the title string to appear in the title line. DATE indicates the format
in which the date is to appear in the title line (dd.mm.yy where dd is the two-digit
day, mm is the two- digit month and yy is the last two digits of the year).

The HEADER strings correspond to the ON fields. ON(VALCNT) is a special ON
field used with OCCUR to print the count of occurrences.

Write DD statements for the A123456.SORT.SAMPIN and PUBCT data sets and
place them at the end of the job:

96 Getting Started with DFSORT R14

//BKIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//PUBCT DD SYSOUT=A

When this OCCUR operator is run, the PUBCT data set that results looks like:

Books from Publishers 21.1ð.92

Publisher Books in Use
--------- ---------------
COR 7
FERN 4
VALD 5
WETH 4

The name of each publisher is printed along with the number of times that publisher
appeared in the sample bookstore data set which is equivalent to the number of
different books from that publisher.

 So Far

You have now learned how to print a simple or tailored report showing how
many times different field values occur. Next, you will learn how to use the
SELECT operator.

Selecting Records by Field Occurrences
You can use ICETOOL's SELECT operator to create an output data set with
records selected according to how many times different field values occur. You can
keep only the first record for each value (FIRST operand), only the last record for
each value (LAST operand), or only those records with values that occur:

� More than once, that is, duplicate values (ALLDUPS operand)
� Only once, that is, non-duplicate values (NODUPS operand)
� A specified number of times (EQUAL operand)
� More than a specified number of times (HIGHER operand)
� Less than a specified number of times (LOWER operand)

To create an output data set containing records for publishers with more than four
different books in use, write the following SELECT statement:

\ Separate output containing records for publishers
\ with more than 4 books in use
 SELECT FROM(BKIN) TO(BKOUT) ON(1ð6,4,CH) HIGHER(4)

──┬─── ───┬─── ────┬───── ────┬────
│ │ │ └──5 Criteria for selecting records

 │ │ │
 │ │ └─────────────5 Publisher
 │ │

│ └────────────────────────5 ddname of output data set
 │

└──────────────────────────────────5 ddname of input data set

 Chapter 10. Using the ICETOOL Utility 97

BKIN is the ddname for the sample bookstore data set. BKOUT is the ddname of
the output data set that will contain the records for each publisher field value that
occurs more than 4 times (all of the records for COR and VALD in this case).

Write a DD statement for the A123456.BOOKS1 data sets and place it at the end
of the job:

//BKOUT DD DSN=A123456.BOOKS1,DISP=(NEW,CATLG,DELETE),
// SPACE=(CYL,(3,3)),UNIT=339ð

Figure 6 shows the Book Title and Publisher fields for the records in the resulting
output data set. The actual records contain all of the fields.

Book
Title Publisher

1 75 1ð6 1ð9

LIVING WELL ON A SMALL BUDGET COR
SUPPLYING THE DEMAND COR
INKLINGS: AN ANTHOLOGY OF YOUNG POETS COR
PICK'S POCKET DICTIONARY COR
MODERN ANTHOLOGY OF WOMEN POETS COR
INTRODUCTION TO PSYCHOLOGY COR
CRISES OF THE MIDDLE AGES COR
VIDEO GAME DESIGN VALD
EDITING SOFTWARE MANUALS VALD
STRATEGIC MARKETING VALD
SHORT STORIES AND TALL TALES VALD
INTRODUCTION TO BIOLOGY VALD

Figure 6. Books from Publishers with More than Four Books in Use

 So Far

So far in this chapter you have learned how to print statistics for numeric fields,
create sorted and unsorted data sets, obtain a count of numeric fields in a
range for a particular field, print fields from an input data set, print reports, print
a count of field occurrences and select output records based on field occur-
rences. The last part of this chapter shows the complete ICETOOL job and its
resulting TOOLMSG output.

Complete ICETOOL Job and TOOLMSG Output
Here is the complete ICETOOL job you created in this chapter:

98 Getting Started with DFSORT R14

//EXAMP JOB A492,PROGRAMMER
//TOOL EXEC PGM=ICETOOL,REGION=1ð24K
//STEPLIB DD DSN=A492.SM,DISP=SHR
//TOOLMSG DD SYSOUT=A
//DFSMSG DD SYSOUT=A
//TOOLIN DD \

\ Statistics from all branches
STATS FROM(ALL) ON(18,4,ZD) ON(28,6,PD) ON(22,6,PD)
\ Books from VALD and WETH
SORT FROM(BKS) TO(DAPUBS,PRPUBS) USING(SPUB)
\ Separate output for California and Colorado branches
SORT FROM(ALL) USING(CACO)
\ California branches profit analysis
RANGE FROM(CADASD) ON(28,6,PD) HIGHER(-15ðð) LOWER(+8ððð)

\ Branches with less than 32 employees
RANGE FROM(ALL) ON(18,4,ZD) LOWER(32)

\ Print profit, employees, and city for each Colorado branch
DISPLAY FROM(CODASD) LIST(OUT) ON(28,6,PD) ON(18,4,ZD) ON(1,15,CH)
\ Print a report for the Colorado branches
DISPLAY FROM(CODASD) LIST(RPT) -
DATE TITLE('Colorado Branches Report') PAGE -
HEADER('City') HEADER('Profit') HEADER('Employees') -
ON(1,15,CH) ON(28,6,PD) ON(18,4,ZD) BLANK -
TOTAL('Total') AVERAGE('Average') MINIMUM('Lowest')

\ Print a report of books for individual publishers
 DISPLAY FROM(DAPUBS) LIST(SECTIONS) -

TITLE('BOOKS FOR INDIVIDUAL PUBLISHERS') PAGE -
HEADER('TITLE OF BOOK') ON(1,35,CH) -
HEADER('PRICE OF BOOK') ON(17ð,4,BI,C1,F'$') -
BTITLE('PUBLISHER:') BREAK(1ð6,4,CH) -
BAVERAGE('AVERAGE FOR THIS PUBLISHER') -
BTOTAL('TOTAL FOR THIS PUBLISHER') -
AVERAGE('AVERAGE FOR ALL PUBLISHERS') -
TOTAL('TOTAL FOR ALL PUBLISHERS')

\ Print the count of books in use from each publisher
OCCUR FROM(BKIN) LIST(PUBCT) BLANK -
TITLE('Books from Publishers') DATE(DMY.) -
HEADER('Publisher') HEADER('Books in use') -

 ON(1ð6,4,CH) ON(VALCNT)
\ Separate output containing records for publishers
\ with more than 4 books in use
SELECT FROM(BKIN) TO(BKOUT) ON(1ð6,4,CH) HIGHER(4)
/\
//ALL DD DSN=A123456.SORT.BRANCH,DISP=SHR
//BKS DD DSN=A123456.SORT.SAMPIN,DISP=SHR
// DD DSN=A123456.SORT.SAMPADD,DISP=SHR

Figure 7 (Part 1 of 2). Complete ICETOOL Job.

 Chapter 10. Using the ICETOOL Utility 99

//DAPUBS DD DSN=&&DSRT,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=SYSDA
//PRPUBS DD SYSOUT=A
//SPUBCNTL DD \
 SORT FIELDS=(1ð6,4,A,1,75,A),FORMAT=CH
 INCLUDE COND=(1ð6,4,EQ,C'VALD',OR,1ð6,4,EQ,C'WETH'),
 FORMAT=CH
/\
//CACOCNTL DD \
 SORT FIELDS=(1,15,CH,A)
 OUTFIL FNAMES=(CADASD,CATAPE),INCLUDE=(16,2,CH,EQ,C'CA')
 OUTFIL FNAMES=(CODASD,COTAPE),INCLUDE=(16,2,CH,EQ,C'CO')
/\
//CADASD DD DSN=&&CA,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=339ð
//CATAPE DD DSN=CA.BRANCH,UNIT=348ð,VOL=SER=111111,
// DISP=(NEW,KEEP),LABEL=(,SL)
//CODASD DD DSN=&&CO,DISP=(,PASS),SPACE=(CYL,(2,2)),UNIT=339ð
//COTAPE DD DSN=CO.BRANCH,UNIT=348ð,VOL=SER=222222,
// DISP=(NEW,KEEP),LABEL=(,SL)
//OUT DD SYSOUT=A
//RPT DD SYSOUT=A
//SECTIONS DD SYSOUT=A
//BKIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
//PUBCT DD SYSOUT=A
//BKOUT DD DSN=A123456.BOOKS1,DISP=(NEW,CATLG,DELETE),
// SPACE=(CYL,(3,3)),UNIT=339ð

Figure 7 (Part 2 of 2). Complete ICETOOL Job.

Here is the complete TOOLMSG data set that results fromrunning this job:

100 Getting Started with DFSORT R14

ICE6ððI ð DFSORT ICETOOL UTILITY RUN STARTED

ICE632I ð SOURCE FOR ICETOOL STATEMENTS: TOOLIN

ICE63ðI ð MODE IN EFFECT: STOP

\ Statistics from all branches
STATS FROM(ALL) ON(18,4,ZD) ON(28,6,PD) ON(22,6,PD)

ICE627I ð DFSORT CALL ððð1 FOR COPY FROM ALL TO E35 EXIT COMPLETED
ICE628I ð RECORD COUNT: ððððððððððððð12
ICE6ð7I ð STATISTICS FOR (18,4,ZD) :
ICE6ð8I ð MINIMUM: +ððððððððððððð15, MAXIMUM: +ððððððððððððð35
ICE6ð9I ð AVERAGE: +ððððððððððððð24, TOTAL : +ðððððððððððð298
ICE6ð7I ð STATISTICS FOR (28,6,PD) :
ICE6ð8I ð MINIMUM: -ððððððððððð4278, MAXIMUM: +ððððððððððð8276
ICE6ð9I ð AVERAGE: +ððððððððððð4222, TOTAL : +ðððððððððð5ð665
ICE6ð7I ð STATISTICS FOR (22,6,PD) :
ICE6ð8I ð MINIMUM: +ðððððððððð123ðð, MAXIMUM: +ðððððððððð4282ð
ICE6ð9I ð AVERAGE: +ðððððððððð27469, TOTAL : +ððððððððð329637
ICE6ð2I ð OPERATION RETURN CODE: ðð

\ Books from VALD and WETH
SORT FROM(BKS) TO(DAPUBS,PRPUBS) USING(SPUB)

ICE6ð6I ð DFSORT CALL ððð2 FOR SORT FROM BKS TO OUTFIL USING SPUBCNTL COMPLETED
ICE6ð2I ð OPERATION RETURN CODE: ðð

\ Separate output for California and Colorado branches
SORT FROM(ALL) USING(CACO)

ICE6ð6I ð DFSORT CALL ððð3 FOR SORT FROM ALL TO OUTFIL USING CACOCNTL COMPLETED
ICE6ð2I ð OPERATION RETURN CODE: ðð

\ California branches profit analysis
RANGE FROM(CADASD) ON(28,6,PD) HIGHER(-15ðð) LOWER(+8ððð)

ICE627I ð DFSORT CALL ððð4 FOR COPY FROM CADASD TO E35 EXIT COMPLETED
ICE628I ð RECORD COUNT: ðððððððððððððð7
ICE631I ð NUMBER OF VALUES IN RANGE FOR (28,6,PD) : ðððððððððððððð3
ICE6ð2I ð OPERATION RETURN CODE: ðð

\ Branches with less than 32 employees
RANGE FROM(ALL) ON(18,4,ZD) LOWER(32)

ICE627I ð DFSORT CALL ððð5 FOR COPY FROM ALL TO E35 EXIT COMPLETED
ICE628I ð RECORD COUNT: ððððððððððððð12
ICE631I ð NUMBER OF VALUES IN RANGE FOR (18,4,ZD) : ðððððððððððððð8
ICE6ð2I ð OPERATION RETURN CODE: ðð

\ Print profit, employees, and city for each Colorado branch
DISPLAY FROM(CODASD) LIST(OUT) ON(28,6,PD) ON(18,4,ZD) ON(1,15,CH)

ICE627I ð DFSORT CALL ððð6 FOR COPY FROM CODASD TO E35 EXIT COMPLETED
ICE6ð3I ð INFORMATION PRINTED IN OUT DATA SET
ICE628I ð RECORD COUNT: ðððððððððððððð5
ICE6ð2I ð OPERATION RETURN CODE: ðð

\ Print a report for the Colorado branches
DISPLAY FROM(CODASD) LIST(RPT) -
DATE TITLE('Colorado Branches Report') PAGE -

 HEADER('City') HEADER('Profit') HEADER('Employees') -
ON(1,15,CH) ON(28,6,PD) ON(18,4,ZD) BLANK -

 TOTAL('Total') AVERAGE('Average') MINIMUM('Lowest')
ICE627I ð DFSORT CALL ððð7 FOR COPY FROM CODASD TO E35 EXIT COMPLETED
ICE6ð3I ð INFORMATION PRINTED IN RPT DATA SET
ICE628I ð RECORD COUNT: ðððððððððððððð5
ICE6ð2I ð OPERATION RETURN CODE: ðð

Figure 8 (Part 1 of 2). Complete TOOLMSG Data Set.

 Chapter 10. Using the ICETOOL Utility 101

\ Print a report of books for individual publishers
DISPLAY FROM(DAPUBS) LIST(SECTIONS) -
TITLE('BOOKS FOR INDIVIDUAL PUBLISHERS') PAGE -
HEADER('TITLE OF BOOK') ON(1,35,CH) -
HEADER('PRICE OF BOOK') ON(17ð,4,BI,C1,F'$') -
BTITLE('PUBLISHER:') BREAK(1ð6,4,CH) -
BAVERAGE('AVERAGE FOR THIS PUBLISHER') -
BTOTAL('TOTAL FOR THIS PUBLISHER') -
AVERAGE('AVERAGE FOR ALL PUBLISHERS') -
TOTAL('TOTAL FOR ALL PUBLISHERS')

ICE627I ð DFSORT CALL ððð8 FOR COPY FROM DAPUBS TO E35 EXIT COMPLETED
ICE6ð3I ð INFORMATION PRINTED IN SECTIONS DATA SET
ICE628I ð RECORD COUNT: ððððððððððððð19
ICE6ð2I ð OPERATION RETURN CODE: ðð

\ Print the count of books in use from each publisher
OCCUR FROM(BKIN) LIST(PUBCT) BLANK -
TITLE('Books from Publishers') DATE(DMY.) -
HEADER('Publisher') HEADER('Books in use') -

 ON(1ð6,4,CH) ON(VALCNT)
ICE627I ð DFSORT CALL ððð9 FOR SORT FROM BKIN TO E35 EXIT COMPLETED
ICE6ð3I ð INFORMATION PRINTED IN PUBCT DATA SET
ICE628I ð RECORD COUNT: ððððððððððððð2ð
ICE638I ð NUMBER OF RECORDS RESULTING FROM CRITERIA: ðððððððððððððð4
ICE6ð2I ð OPERATION RETURN CODE: ðð

\ Separate output containing records for publishers
\ with more than 4 books in use
SELECT FROM(BKIN) TO(BKOUT) ON(1ð6,4,CH) HIGHER(4)

ICE627I ð DFSORT CALL ðð1ð FOR SORT FROM BKIN TO BKOUT COMPLETED
ICE628I ð RECORD COUNT: ððððððððððððð2ð
ICE638I ð NUMBER OF RECORDS RESULTING FROM CRITERIA: ððððððððððððð12
ICE6ð2I ð OPERATION RETURN CODE: ðð

ICE6ð1I ð DFSORT ICETOOL UTILITY RUN ENDED - RETURN CODE: ðð

Figure 8 (Part 2 of 2). Complete TOOLMSG Data Set.

| Summary

| This chapter covered several of the twelve ICETOOL operators and their uses.
| For more information on the ICETOOL operators, please refer to Application
| Programming Guide.

102 Getting Started with DFSORT R14

| Part 4. Learning to Use Symbols

| Chapter 11. Defining and Using Symbols 105
| Creating the SYMNAMES Data Set . 105
| Defining Symbols for Fields . 105
| Using Symbols for Fields in DFSORT Statements 107
| Using Symbols for Fields in ICETOOL Operators 108
| Defining and Using Symbols for Constants . 109

 Copyright IBM Corp. 1983, 1998 103

104 Getting Started with DFSORT R14

| Chapter 11. Defining and Using Symbols

| A symbol is a name (preferably something meaningful) you can use to represent a
| field or a constant. Sets of symbols, also called mappings, can be used to describe
| a group of related fields and constants such as the information in a particular type
| of record. Such mappings allow you to refer to fields and constants by their
| symbols, freeing you from having to know the position, length and format of fields
| or the values of constants you want to use.

| DFSORT's symbol processing feature allows you or your site to create symbols for
| the fields in your own records and for constants associated with those fields. You
| can then use those symbols in DFSORT control statements and ICETOOL opera-
| tors.

| In addition, you can obtain predefined sets of symbols to use for the records
| created by other products such as RACF, DCOLLECT and DFSMSrmm. Visit the
| DFSORT home page at the following URL to obtain information about downloading
| these predefined sets of symbols:

| http://www.ibm.com/storage/dfsort/

| The chapter in this section explains how to define symbols for the bookstore data
| set and use them in several DFSORT control statements and ICETOOL operators.
| For a full description of how symbols can be used with DFSORT and ICETOOL,
| see Application Programming Guide.

| Creating the SYMNAMES Data Set
| DFSORT and ICETOOL obtain the symbols to be used from the data set specified
| in a SYMNAMES DD statement. Create the SYMNAMES data set you want to use
| with RECFM=FB and LRECL=80 in the same way you would create a data set con-
| taining DFSORT JCL and control statements. Then use an editor, such as ISPF
| EDIT, to write the SYMNAMES statements defining your symbols, as described
| below.

| After you create the SYMNAMES data set, you can use it in any DFSORT or
| ICETOOL application for which you want to use the symbols you defined. You can
| add, delete and change SYMNAMES statements in the SYMNAMES data set at
| any time using the editor.

| For this chapter, we will assume you have created a data set called
| SORT.SYMBOLS to put your SYMNAMES statements in.

| Defining Symbols for Fields
| Appendix B, “The Sample Bookstore Data Sets” on page 117 shows the fields of
| the bookstore data set. To define the symbols for these fields, write a SYMNAMES
| statement for each one in SORT.SYMBOLS. To write SYMNAMES statements that
| define the symbol Title for the Title field and the symbol Author_Last_Name for the
| Author's Last Name field:

 Copyright IBM Corp. 1983, 1998 105

| When complete, the SYMNAMES statements for the Title and Author_Last_Name
| symbols look like:

| \ Symbols for fields
| Title,1,75,CH
| Author_Last_Name,\,15,CH

| The SYMNAMES statements to define the symbols for the other fields in the
| bookstore data set look like:

| Author_First_Name,\,15,CH
| Publisher,\,4,CH
| Course_Department,\,5,CH
| Course_Number,\,5,CH
| Course_Name,\,25,CH
| Instructor_Last_Name,\,15,CH
| Instructor_Initials,\,2,CH
| Number_in_Stock,\,4,BI
| Number_Sold_YTD,\,4,BI
| Price,\,4,BI

| Table 50. Steps to Define Symbols for Fields

| Step| Action

| 1| Write a comment statement (optional):

| * Symbols for fields

| 2| Type Title followed by a comma.

| This is the symbol you will use for the Title field. A symbol can be 1 to 50 char-
| acters consisting of uppercase letters (A-Z), lowercase letters (a-z), numbers
| (0-9), the number sign (#), the dollar sign ($), the commercial at sign (@) and
| the underscore(_). However, the first character must not be a number. Title,
| TITLE and title are three different symbols.

| 3| Type the position of the Title field followed by a comma.

| The position of the Title field is 1.

| 4| Type the length of the Title field followed by a comma.

| The length of the Title field is 75.

| 5| Type the format of the Title field followed by a blank.

| The format of the Title field is CH.

| 6| Type Author_Last_Name followed by a comma.

| This is the symbol you will use for the Author's Last Name field.

| 7| Type * for the position followed by a comma.

| An asterisk (*) for the position shows that this field immediately follows the pre-
| vious field. The * here will automatically assign 76 as the position of the
| Author_Last_Name symbol. You could specify 76 instead of *, but * is preferable
| when fields are adjacent. * allows symbols for fields to be inserted without
| changes to symbols for other fields.

| 8| Type the length of the Author's Last Name field followed by a comma.

| The length of the Author's Last Name field is 15.

| 9| Type the format of the Author's Last Name field followed by a blank.

| The format of the Author's Last Name field is CH.

106 Getting Started with DFSORT R14

| So Far

| So far, you have learned how to create a SYMNAMES data set and use it to
| define symbols for your fields. Now you will learn how to use the symbols for
| fields you defined.

| Using Symbols for Fields in DFSORT Statements
| Now that you have your symbols for the bookstore data set defined in
| SORT.SYMBOLS, you can use those symbols in DFSORT control statements
| wherever fields can appear.

| Here's an example of a DFSORT application that uses symbols. It selects the
| books for courses 00032 and 10347 from SORT.SAMPIN and sorts them by title,
| instructor and price:

| //SYM1 JOB A492,PROGRAMMER
| //SORTIT EXEC PGM=SORT
| //STEPLIB DD DSN=A492.SM,DISP=SHR
| //SYSOUT DD SYSOUT=A
| //SYMNAMES DD DSN=A123456.SORT.SYMBOLS,DISP=SHR
| //SYMNOUT DD SYSOUT=\
| //SORTIN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
| //SORTOUT DD DSN=A123456.SORT.SAMPOUT,DISP=SHR
| //SORTWKð1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
| //SYSIN DD \
| INCLUDE COND=(Course_Number,EQ,C'ððð32',OR,
| Course_Number,EQ,C'1ð347')
| SORT FIELDS=(Title,A,
| Instructor_Last_Name,A,Instructor_Initials,A,
| Price,A)
| /\

| The SYMNAMES DD statement specifies the SYMNAMES data set to be used for
| this application.

| The SYMNOUT DD statement specifies a data set in which you want DFSORT to
| list your original SYMNAMES statements and the symbol table constructed from
| them. You can omit the SYMNOUT data set if you don't want to see that informa-
| tion. For this SYMNAMES data set, the SYMNOUT listing looks like:

 Chapter 11. Defining and Using Symbols 107

| ------- ORIGINAL STATEMENTS FROM SYMNAMES -------
| \ Symbols for fields
| Title,1,75,CH
| Author_Last_Name,\,15,CH
| Author_First_Name,\,15,CH
| Publisher,\,4,CH
| Course_Department,\,5,CH
| Course_Number,\,5,CH
| Course_Name,\,25,CH
| Instructor_Last_Name,\,15,CH
| Instructor_Initials,\,2,CH
| Number_in_Stock,\,4,BI
| Number_Sold_YTD,\,4,BI
| Price,\,4,BI

| ------------------ SYMBOL TABLE -----------------
| Title,1,75,CH
| Author_Last_Name,76,15,CH
| Author_First_Name,91,15,CH
| Publisher,1ð6,4,CH
| Course_Department,11ð,5,CH
| Course_Number,115,5,CH
| Course_Name,12ð,25,CH
| Instructor_Last_Name,145,15,CH
| Instructor_Initials,16ð,2,CH
| Number_in_Stock,162,4,BI
| Number_Sold_YTD,166,4,BI
| Price,17ð,4,BI

| The INCLUDE and SORT statements use symbols for fields instead of position,
| length and format.

| Using Symbols for Fields in ICETOOL Operators
| You can also use the symbols from SORT.SYMBOLS in ICETOOL operators and
| their associated DFSORT control statements wherever fields can appear. Here's
| an example of an ICETOOL application that uses symbols for fields. It does what
| the DFSORT example in “Using Symbols for Fields in DFSORT Statements” on
| page 107 does, but also shows the number of selected books priced below 7
| dollars and the number priced above 20 dollars:

108 Getting Started with DFSORT R14

| //SYM2 JOB A492,PROGRAMMER
| //TOOL EXEC PGM=ICETOOL,REGION=1ð24K
| //STEPLIB DD DSN=A492.SM,DISP=SHR
| //TOOLMSG DD SYSOUT=A
| //DFSMSG DD SYSOUT=A
| //SYMNAMES DD DSN=A123456.SORT.SYMBOLS,DISP=SHR
| //SYMNOUT DD SYSOUT=\
| //IN DD DSN=A123456.SORT.SAMPIN,DISP=SHR
| //OUT DD DSN=A123456.SORT.SAMPOUT,DISP=SHR
| //TOOLIN DD \
| SORT FROM(IN) TO(OUT) USING(CTL1)
| RANGE FROM(OUT) ON(Price) LOWER(7ðð)
| RANGE FROM(OUT) ON(Price) HIGHER(2ððð)
| //CTL1CNTL DD \
| INCLUDE COND=(Course_Number,EQ,C'ððð32',OR,
| Course_Number,EQ,C'1ð347')
| SORT FIELDS=(Title,A,
| Instructor_Last_Name,A,Instructor_Initials,A,
| Price,A)
| /\

| The SYMNAMES DD statement specifies the SYMNAMES data set to be used for
| this application.

| The SYMNOUT DD statement specifies a data set in which you want ICETOOL to
| list your original SYMNAMES statements and the symbol table constructed from
| them. Since the SYMNAMES data set is the same as for the DFSORT application
| shown in “Using Symbols for Fields in DFSORT Statements” on page 107, the
| SYMNOUT listing will be the same as well.

| The RANGE operators and the INCLUDE and SORT statements use symbols for
| fields instead of position, length and format.

| So Far

| You have now learned how to use symbols for fields in DFSORT control state-
| ments and ICETOOL operators. Next, you will learn how to define and use
| symbols for your constants.

| Defining and Using Symbols for Constants
| You can use symbols wherever decimal constants, character constants,
| hexadecimal constants or bit constants can appear in DFSORT control statements
| and ICETOOL operators.

| The ICETOOL example in “Using Symbols for Fields in ICETOOL Operators” on
| page 108 uses the following RANGE operators:

| RANGE FROM(OUT) ON(Price) LOWER(7ðð)
| RANGE FROM(OUT) ON(Price) HIGHER(2ððð)

| and the following INCLUDE statement:

| INCLUDE COND=(Course_Number,EQ,C'ððð32',OR,
| Course_Number,EQ,C'1ð347')

 Chapter 11. Defining and Using Symbols 109

| 700 and 2000 are decimal constants. C'00032' and C'10347' are character con-
| stants. You can use symbols for these constants to make them more understand-
| able in the ICETOOL operators and DFSORT control statements you write. Add
| symbols for these four constants to the SORT.SYMBOLS data set:

| When complete, the SYMNAMES statements for these constants look like:

| \ Symbols for constants
| Discount,7ðð
| Premium,2ððð
| Beginning_Economics,C'ððð32'
| Advanced_Sociology,C'1ð347'

| The RANGE operators can now be written as:

| RANGE FROM(OUT) ON(Price) LOWER(Discount)
| RANGE FROM(OUT) ON(Price) HIGHER(Premium)

| The INCLUDE statement can now be written as:

| INCLUDE COND=(Course_Number,EQ,Beginning_Economics,OR,
| Course_Number,EQ,Advanced_Sociology)

| Table 51. Steps to Define Symbols for Constants

| Step| Action

| 1| Write a comment statement (optional):

| * Symbols for constants

| 2| Type Discount followed by a comma.

| This is the symbol you will use for the decimal constant 700.

| 3| Type the constant followed by a blank.

| The constant is 700. You can also use +700.

| 4| Type Premium followed by a comma.

| This is the symbol you will use for the decimal constant 2000.

| 5| Type the constant followed by a blank.

| The constant is 2000. You can also use +2000.

| 6| Type Beginning_Economics followed by a comma.

| This is the symbol you will use for the character constant C'00032'.

| 7| Type the constant followed by a blank.

| The constant is C'00032' . You can also use '00032' or c'00032' .

| 8| Type Advanced_Sociology followed by a comma.

| This is the symbol you will use for the character constant C'10347'.

| 9| Type the constant followed by a blank.

| The constant is C'10347' . You can also use '10347' or c'10347' .

110 Getting Started with DFSORT R14

| Summary

| This chapter covered how to define and use symbols for fields and constants in
| DFSORT control statements and ICETOOL operators. For more information on
| symbols, please refer to Application Programming Guide.

| This completes the Getting Started tutorials. The appendixes that follow contain
| valuable information on DFSORT that is also related to this publication.

 Chapter 11. Defining and Using Symbols 111

112 Getting Started with DFSORT R14

 Part 5. Appendixes

 Copyright IBM Corp. 1983, 1998 113

114 Getting Started with DFSORT R14

 Using Sample Data Sets

Appendix A. Using the DFSORT Sample Data Sets

The DFSORT product tape includes a sample job, ICEDATA, which creates the
data sets SORT.SAMPIN, SORT.SAMPOUT, SORT.SAMPADD, and
SORT.BRANCH, to use with the examples in this book. Make sure these data sets
are available at your site.

Many of the examples in this book use A123456.SORT.SAMPIN,
A123456.SORT.SAMPOUT, A123456.SORT.SAMPADD, and
A123456.SORT.BRANCH as the input and output data sets. To match the data set
names used in the examples, copy the data sets to your own user ID. Allocate
userid.SORT.SAMPIN, userid.SORT.SAMPOUT, and userid.SORT.SAMPADD as
fixed-length data sets with a record length of 173 bytes. Allocate
userid.SORT.BRANCH as a fixed-length data set with a record length of 33 bytes.
Then copy SORT.SAMPIN to userid.SORT.SAMPIN, SORT.SAMPOUT to
userid.SORT.SAMPOUT, SORT.SAMPADD to userid.SORT.SAMPADD, and
SORT.BRANCH to userid.SORT.BRANCH.

 Copyright IBM Corp. 1983, 1998 115

 Using Sample Data Sets

116 Getting Started with DFSORT R14

 Sample Bookstore Data Sets

Appendix B. The Sample Bookstore Data Sets

Assume that the sample bookstore data set, SORT.SAMPIN, is used at a college
bookstore to keep information about the books it sells. Each horizontal line repres-
ents a record, and each column represents a record field. For the sake of illus-
tration, the data set has only 20 records, each 173 bytes long. The data set has
also been arranged with headings and numbers to show the byte positions of each
field. Neither of these appear in the actual data set. The fields which are in binary
format may not appear on your terminal. The methods used to arrange and present
that data set as you see it here are explained in the chapters detailing the DFSORT
functions.

The first nine fields of each record contain character data and the last three fields
contain binary data (binary data is shown in its character representation). Note that
because binary data cannot contain decimal points, the prices are shown in cents
rather than dollars. Blanks in the course field indicate that the book is not required
for any class.

The additional sample data set, SORT.SAMPADD, has 22 records, each 173 bytes
long, with the same fields as the sample data set, SORT.SAMPIN.

For your quick reference, the table below shows the length and data format of each
field on the sample data sets shown in Appendix C, “Processing Order of Control
Statements” on page 121.

Field Length Data Format

Title
Author’s Last Name
Author’s First Name
Publisher
Course Department
Course Number
Course Name
Instructor’s Last Name
Instructor’s Initials
Number In Stock
Number Sold Y-to-D
Price

75
15
15
4
5
5
25
15
2
4
4
4

CH
CH
CH
CH
CH
CH
CH
CH
CH
BI
BI
BI

 Copyright IBM Corp. 1983, 1998 117

 Sample Bookstore Data Sets

COMPUTER LANGUAGES

INTRODUCTION TO PSYCHOLOGY

PICK’S POCKET DICTIONARY

EIGHTEENTH CENTURY EUROPE

VIDEO GAME DESIGN

SHORT STORIES AND TALL TALES

STRATEGIC MARKETING

LIVING WELL ON A SMALL BUDGET

THE COMPLETE PROOFREADER

EDITING SOFTWARE MANUALS

CRISES OF THE MIDDLE AGES

INKLINGS: AN ANTHOLOGY OF YOUNG POETS

INTRODUCTION TO BIOLOGY

THE INDUSTRIAL REVOLUTION

SUPPLYING THE DEMAND

SYSTEM PROGRAMMING

NUMBERING SYSTEMS

COMPUTERS: AN INTRODUCTION

ADVANCED TOPICS IN PSYCHOANALYSIS

MODERN ANTHOLOGY OF WOMEN POETS

MURRAY

DUZET

GUSTLIN

MUNGER

RASMUSSEN

AVRIL

YAEGER

DEWAN

GREEN

OJALVO

BENDER

WILDE

WU

GROSS

MILLER

CAUDILLO

BAYLESS

DINSHAW

OSTOICH

COWARD

ROBERT

LINDA

CAROL

ALICE

LORI

LILIANA

MARK

FRANK

ANN

VICTOR

GREG

KAREN

CHIEN

DON

TOM

RAUL

WILLIAM

JOKII

DIANNE

PETER

FERN

COR

COR

WETH HIST

VALD

VALD

VALD

COR

FERN

VALD

COR

COR

VALD

WETH

ENGL

BIOL

ENGL

HIST

HIST

COR

WETH

FERN

WETH

FERN

COR

COMP

PSYCH

COMP

ENGL

BUSIN

BUSIN

COMP

COMP

COMP

PSYCH

ENGL

ENGL

1 76 91 105 106 109 110 11475 90

Book
Title

Author’s
Last Name

Author’s
First Name

Course
DepartmentPublisher

Sample Data Set - SORT.SAMPIN

GUNTHER’S GERMAN DICTIONARY

THE ART OF TAKEOVERS

A SMALLER WORLD: MICROBES

FREUD’S THEORIES

QUEUE THEORY

FRENCH TO ENGLISH DICTIONARY

POLITICS AND HISTORY

KNOW YOUR COMSUMER

COMPLETE SPANISH DICTIONARY

THE TOY STORE TEST

DNA: BLUEPRINT FOR YOU

MAP OF THE HUMAN BRAIN

DESIGNING APPLICATIONS

GUIDE TO COLLEGE LIFE

CIVILIZATION SINCE ROME FELL

ANTICIPATING THE MARKET

ANOTHER ITALIAN DICTIONARY

NOVEL IDEAS

CELLS AND HOW THEY WORK

THE ANIMAL KINGDOM

REBIRTH FROM ITALY

ZEN BUSINESS

WILLIS

HUNT

BEESLY

GOOLE

FOX

JONES

TOMPSOM

ZANE

ROBERTS

LITTLE

IAVERS

WINTER

STEVENS

LAMB

PIERCE

ALLEN

UNDER

PETERS

JETTS

YOUNG

FISH

WILLIAMS

GUNTER

ROBERT

GEORGE

APRIL

THAD

JACK

KEN

JENNIFER

ANGEL

MARIE

ILSE

POLLY

NOAH

CHARLENE

NICOLE

CLYDE

JOAN

SETH

PETER

KEVIN

JOHN

KATIE

WETH

FERN

FERN

VALD

FERN

PSYCH

BUSIN

FERN

FERN

COR

VALD

COR

FERN

COR

COR

WETH

WETH

WETH

HIST

BIOL

PSYCH

COMP

BUSIN

COR

VALD

VALD

COR

WETH

VALD
BUSIN

HIST

BUSIN

ENGL

BIOL

BIOL
BIOL

HIST

BUSIN

COMP

1 76 91 105 106 109 110 11475 90

Book
Title

Author’s
Last Name

Author’s
First Name

Course
DepartmentPublisher

Sample Data Set - SORT.SAMPADD

118 Getting Started with DFSORT R14

 Sample Bookstore Data Sets

00032 INTRO TO COMPUTERS

00103

70255

00205

30975

50521

30016

10856

70251

10054

00205

70124

80523

10856

50632

50420

70255

30016

70124

70251 MARKETING
VIDEO GAMES
MODERN POETRY
INTRO TO COMPUTERS

BIOLOGY II
BIOLOGY II

ADVANCED MARKETING

INTRO TO GENETICS

WORLD HISTORY

INTRO TO GENETICS

MODERN POETRY

MARKETING

PSYCHOLOGY I

ADVANCED MARKETING

TECHNICAL EDITING

BUSINESS THEORY

DATA MANAGEMENT

BUSINESS THEORY

FICTION WRITING

VIDEO GAMES

BIOLOGY I

FICTION WRITING

PSYCHOANALYSIS

PSYCHOANALYSIS

WORLD HISTORY

PSYCHOLOGY I

EUROPEAN HISTORY

WORLD HISTORY

BUSINESS THEORY

WORLD HISTORY

EUROPEAN HISTORY

DATA MANAGEMENT

80521

10054

30975

50420

80523

00032

80522
80522

50521

50632

00103

10347

70255

CHATTERJEE

SMITH

SCHOFFE

NEUMANN

NAKATSU

WILLERTON

ZABOSKI

FRIEDMAN

MAXWELL

BUCK

NEUMANN

LORCH

ABRAHAM

FRIEDMAN

BISCARDI

GOODGOLD

SCHOFFE

ZABOSKI

LORCH

MAXWELL

GREENBERG

BUCK

NAKATSU

GOODGOLD

ABRAHAM

CHATTERJEE

HAROLD
HAROLD

WILLERTON

BISCARDI

SMITH

MADRID

SCHOFFE

CL

DC

KN

LB

FL

DW

RL

KR

RF

GR

LB

MH

NG

KR

HR

ST

KN

RL

MH

RF

HC

GR

FL

ST

NG

CL

LM
LM

DW

HR

DC

MM

KN

5

3

29

16

32

6

2600

1088

9900

650

1925

925

2199

1100

595

2000

1899

3000

295

1995

2350

2195

3195

615

1520

2600

2350

2450

1250

2600

995

895

1790

1350

1500

1200

2560

1435

2200

2000

625

1200

795

2495

450

4500

4

17

46

9

10

7

10

17

1

3

6

1

16

14

8

1

4

10

15

3

15

2

20

32

1

23

6

2

26

20

21

15

20

35

21

15

25

0

26

6

11

12

15

8

20

2

14

10

7

7

12

23

15

12

17

9

26

3

11

25

15

9

46

26

30

38

20

17

20

15

19

12

9

12

115

115

120

120

145

145

160

160

161

161

162

162

165

165

166

166

169

169

170

170

173

173

144

144

119

119

159

159

Course
Number

Course
Number

Course
Name

Course
Name

Instructor’s
Last Name

Instructor’s
Last Name

Instructor’s
Initials

Instructor’s
Initials

Price

Price

Number
In Stock

Number
In Stock

Number Sold
Year-to-Date

Number Sold
Year-to-Date

Sample Data Set - SORT.SAMPIN (continued)

Sample Data Set - SORT.SAMPADD (continued)

 Appendix B. The Sample Bookstore Data Sets 119

 Sample Bookstore Data Sets

120 Getting Started with DFSORT R14

 Processing Order of Control Statements

Appendix C. Processing Order of Control Statements

The flowchart below shows the order in which control statements are processed.
(SUM is processed at the same time as SORT or MERGE. It is not used with
COPY.)

Although you can write the statements in any order, DFSORT always processes the
statements in the order shown below.

INCLUDE
OMIT

INREC

SORT
MERGE
OPTION COPY
SUM

OUTREC

OUTFIL

Figure 9. Processing Order of Control Statements

 Copyright IBM Corp. 1983, 1998 121

 Processing Order of Control Statements

122 Getting Started with DFSORT R14

Summary of Changes

 Release 13

New Programming Support for
Release 13

DFSORT's Performance Booster for
The SAS** System: DFSORT Release 13 pro-
vides significant CPU time improvements for SAS appli-
cations. To take advantage of this new feature, contact
SAS Institute Inc. for details of the support they provide
to enable this enhancement.

 Dynamic Hipersorting: Dynamic Hipersorting
is a new, automatic feature that eliminates the unin-
tended system paging activity and expanded storage
and paging data set space shortages that sometimes
resulted from a large amount of Hipersorting activity,
especially from multiple concurrent Hipersorting applica-
tions.

Dynamic Hipersorting allows for more optimal DFSORT
and system performance and provides installation
options that allow you to customize
HIPRMAX=OPTIMAL to your own criteria. With the
advent of this feature, we recommend that you use
HIPRMAX=OPTIMAL as your site default.

Performance: Performance enhancements for
DFSORT applications that use the Blockset technique
include the following:

� Dataspace sorting, introduced in R12 for fixed-
length record sort applications, now available for
variable-length record sort applications (MVS/ESA
only)

� Improved data processing methods for fixed-length
record sort applications

� OUTFIL processing for producing multiple output
data sets using a single pass over one or more
input data sets.

OUTFIL Processing: OUTFIL is a new
DFSORT control statement that allows you to create
one or more output data sets for a sort, copy, or merge
application from a single pass over one or more input
data sets. You can use multiple OUTFIL statements,
with each statement specifying the OUTFIL processing
to be performed for one or more output data sets.
OUTFIL processing begins after all other processing
ends (that is, after processing for exits, options, and

other control statements). OUTFIL statements support a
wide variety of output data set tasks, including:

� Creation of multiple output data sets containing
unedited or edited records from a single pass over
one or more input data sets.

� Creation of multiple output data sets containing dif-
ferent ranges or subsets of records from a single
pass over one or more input data sets. In addition,
records that are not selected for any subset can be
saved in another output data set.

� Conversion of variable-length record data sets to
fixed-length record data sets.

� Sophisticated editing capabilities such as
hexadecimal display and control of the way numeric
fields are presented with respect to length, leading
or suppressed zeros, symbols (for example, the
thousands separator and decimal point), leading
and trailing positive and negative signs, and so on.
Twenty-six pre-defined editing masks are available
for commonly used numeric editing patterns,
encompassing many of the numeric notations used
throughout the world. In addition, a virtually unlim-
ited number of numeric editing patterns are avail-
able via user-defined editing masks.

� Selection of a character or hexadecimal string for
output from a lookup table, based on a character,
hexadecimal, or bit string as input (that is, lookup
and change).

� Highly detailed three-level (report, page, and
section) reports containing a variety of report ele-
ments you can specify (for example, current date,
current time, page number, character strings, and
blank lines) or derive from the input records (for
example, character fields, edited numeric input
fields, record counts, and edited totals, maximums,
minimums, and averages for numeric input fields).

National Language Support

Cultural Sort and Merge: DFSORT will allow the
selection of an active locale at installation or run time
and will produce sorted or merged records for output
according to the collating rules defined in the active
locale. This provides sorting and merging for single- or
multi-byte character data based on defined collating
rules which retain the cultural and local characteristics
of a language.

Cultural Include and Omit: DFSORT will allow the
selection of an active locale at installation or run time
and will include or omit records for output according to
the collating rules defined in the active locale. This pro-
vides inclusion or omission for single- or multi-byte

 Copyright IBM Corp. 1983, 1998 123

character data based on defined collating rules which
retain the cultural and local characteristics of a lan-
guage.

OUTFIL Reports: OUTFIL allows date, time, and
numeric values in reports to be formatted in many of the
notations used throughout the world.

ICETOOL Reports: ICETOOL's DISPLAY operator
allows date, time, and numeric values in reports to be
formatted in many of the notations used throughout the
world.

ICETOOL Enhancements: ICETOOL is now
even more versatile as a result of enhancements to the
existing operators. The improvements to ICETOOL
include:

� Allowing more data to be displayed with the
DISPLAY and OCCUR operators. DISPLAY now
allows up to 20 fields (increased from 10) and a line
length of up to 2048 characters (increased from
121). OCCUR now allows a line length of up to
2048 characters (increased from 121).

� More extensive formatting capabilities for numeric
fields with the DISPLAY operator. Formatting items
can be used to change the appearance of individual
numeric fields in reports with respect to separators,
decimal point, decimal places, signs, division,
leading strings, floating strings and trailing strings.
Thirty-three pre-defined editing masks are available
for commonly used numeric editing patterns,
encompassing many of the numeric notations used
throughout the world. Leading and trailing strings
can also be used with character fields.

� Display of the four-digit or two-digit year with the
DISPLAY and OCCUR operators.

� Division of reports into sections with the DISPLAY
operator, based on the values in a character or
numeric break field. Statistics (total, maximum,
minimum and/or average) can be displayed for each
section as well as for the entire report.

� Automatic use of OUTFIL processing for a list of TO
ddnames with the COPY and SORT operators,
resulting in creation of multiple TO (output) data
sets from a single pass over the FROM (input) data
set.

� Allowing OUTFIL statements to be specified in the
USING data set in addition to or instead of the TO
operand with the COPY and SORT operators.

� Allowing the active locale to be specified for the
COPY, COUNT and SORT operators, in order to
override the installation default for the active locale.
Thus, multiple active locales can be used in the
same ICETOOL job step for these operators.

� Allowing the last record for each unique field value
to be kept with the SELECT operator.

INCLUDE/OMIT Substring Search:
INCLUDE and OMIT function enhancements provide
powerful substring search capability to allow inclusion or
omission of records when:

� A specified character or hexadecimal constant is
found anywhere within a specified input field (that
is, a constant is a substring within a field) or

� A specified input value is found anywhere within a
specified character or hexadecimal constant (that is,
a field is a substring within a constant).

SMF Type-16 Record Enhancements:
New fields, such as information pertaining to each
DFSORT run about SORTIN, SORTINnn, SORTOUT
and OUTFIL data sets, control statements, record
counts, specified values for E15, E35, HIPRMAX,
DSPSIZE, FILSZ, LOCALE and AVGRLEN, have been
added to DFSORT's SMF type-16 record.

SMF=FULL, SMF=SHORT, and SMF=NO can now be
specified in an OPTION statement in DFSPARM or the
extended parameter list, to produce or suppress the
SMF type-16 record for an individual application.

Note: The offsets of fields ICESPGN, ICEUSER, and
ICEGROUP have changed in the Release 13
SMF record. If you have programs that refer-
ence those fields, recompile them using the
Release 13 version of the ICESMF macro,
before attempting to run them against Release
13 SMF records.

 Other Enhancements: Several ICEMAC
installation options have been added or changed:

� The IBM-supplied default for EXCPVR has been
changed from ALL to NONE.

� The IBM-supplied default for DYNAUTO has been
changed from NO to YES.

� SDBMSG enables you to specify whether DFSORT
should use the system-determined optimum block
size for DFSORT message data sets and ICETOOL
message and list data sets.

� LOCALE enables you to select an active locale.

� ODMAXBF enables you to specify the maximum
buffer space DFSORT can use for each OUTFIL
data set.

� EXPMAX enables you to specify the maximum total
amount of available storage to be used for all
Hipersorting applications.

� EXPOLD enables you to specify the maximum total
amount of old expanded storage to be used at any
one time by all Hipersorting applications.

124 Getting Started with DFSORT R14

� EXPRES enables you to specify the minimum
amount of available expanded storage to be
reserved by DFSORT for use by non-Hipersorting
applications.

Several run-time options have been added or changed:

� LOCALE enables you to select an active locale.

� SMF enables you to specify whether DFSORT is to
produce SMF type-16 records.

� ODMAXBF enables you to specify the maximum
buffer space DFSORT can use for each OUTFIL
data set.

� NZDPRINT enables you to indicate that positive ZD
summation results are not to be converted to print-
able numbers (overrides ZDPRINT).

� HILEVEL=YES on the MODS statement enables
you to indicate that the E15 and E35 routines are to
be treated as COBOL exits.

� DEBUG options BUFFERS=ANY and
BUFFERS=BELOW will now be recognized but not
used.

DFSORT will now ignore any DD statements not
needed for the application (for example, a SORTIN DD
statement will be ignored for a merge application).

For unsuccessful completion due to an unsupported
operating system, DFSORT, ICEGENER, and ICETOOL
will now pass back a return code of 24 to the operating
system or invoking program.

The installation initialization exit, ICEIEXIT, enables you
to specify the maximum buffer space DFSORT can use
for each OUTFIL data set.

The installation termination exit, ICETEXIT, contains
additional fields such as a flag to indicate that OUTFIL
processing was used.

For INREC and OUTREC:

� The upper limit for columns and the end of fields
has been raised from 32000 to 32752.

� 1: before the RDW field of variable-length records
will be accepted and ignored.

For INCLUDE and OMIT, COND=ALL, COND=(ALL),
COND=NONE, and COND=(NONE) enable you to
include or omit all records.

The L2 value from the RECORD statement will be used
if the L1 value is not specified when an E15 or E32
user exit passes all of the input records.

When input is a VSAM data set and output is a
non-VSAM data set with RECFM not specified,
DFSORT will now set the output RECFM as blocked
rather than unblocked, when doing so will allow the use
of the system-determined optimum block size for output.

New Programming Support for
Release 12 (PTFs)

ICEGENER, copy, and Blockset sort and merge can
now be used when a tape output data set is specified
with DISP=MOD or DISP=OLD, without specifying the
RECFM, LRECL, or BLKSIZE in the DD statement.

Sequential striping is supported for input and output
data sets.

Compression is supported for input and output data
sets.

BatchPipes/MVS input and output pipes are supported.

New Device Support for Release
12 (PTFs)

Four-digit device numbers are supported.

The IBM 3390-9 DASD is supported for input, output,
and work data sets, although it is not recommended for
work data sets for performance reasons.

The IBM RAMAC Array DASD and RAMAC Array Sub-
system are supported for input, output, and work data
sets.

The IBM 3990 Model 6 control unit is supported.

The IBM cached 9343 control unit models are sup-
ported.

 Summary of Changes 125

126 Getting Started with DFSORT R14

 Index

A
allowable comparisons 25
 ascending order

example 3
sorting 11

ASCII data format code 4

B
BI format 4
binary data 4
binary zeros 33
blanks 33

C
calling DFSORT

COBOL program 57
PL/I program 63

CH format 4
character data 4
character strings, format 34
COBOL

calling DFSORT 57
MERGE statement 57
passing DFSORT statements 57
sample program 58, 60
SORT statement 57

COBOL II
FASTSRT compile-time option 69
passing DFSORT statements 63

 comparison
allowable 25
field-to- field 21
 field-to-constant 21, 25
field-to-field 25
operators 22

constant
format for writing 26
inserting with OUTREC statement 34

continuing a statement 14
control fields

combining 14
equally collating 7
multiple 13
overlapping 13
summing 27

control statements
ordering 22
writing 6

control fields
deleting duplicate records 29

control fields (continued)
duplicate 27
 equally collating 27
general information 6
reordering 32

control statements
processing order flowchart 121

COPY statement 19
COPY operator (ICETOOL) 73, 84
copying records 19
COUNT operator (ICETOOL) 73
creating a DFSORT job 5

D
data format 4
data set

copying
 definition 5
increasing speed 21

writing the COPY statement 19
making multiple copies 42
merging

 definition 4
using program control statements 16

sorting
ascending order 11
by multiple control fields 13
 definition 3
descending order 12
increasing speed 21
writing the SORT statement 11

data set
merging

increasing speed 21
tailoring with INCLUDE 21
tailoring with OMIT 21

DD statement
SORTIN 15
SORTOFn 42
SORTOUT 15
SORTWKdd 15, 67
STEPLIB 15
SYSIN 15
SYSOUT 15

DD statement
SORTCNTL 57
SORTOUT 32

defaults
order of equal records 7
overriding 65

using OPTION statement 65
using PARM parameter 65

 Copyright IBM Corp. 1983, 1998 127

DEFAULTS operator (ICETOOL) 73
deleting fields 31
deleting records 27
 descending order

example 3
sorting 12

devices 67
 DFSPARM 15, 66
DISPLAY operator (ICETOOL) 73, 87, 88, 90, 93
DUMMY TAG

ISMF profile 63
 duplicate control fields 27
duplicate fields

OCCUR operator (ICETOOL) 73, 96
SELECT operator (ICETOOL) 73, 97
UNIQUE operator (ICETOOL) 74

E
EBCDIC data format code 4
edit masks

ICETOOL 90
OUTFIL 46

editing records 31
equal control fields 7
excluding records 24
EXEC statement

 merging 18
sorting 15

F
FASTSRT

COBOL 63
compile-time option 69

field-to-constant comparison 21, 25
field-to-field comparison 25
 fields

character and numeric, printing 87
deleting unnecessary fields 31
numeric and character, printing 87
printing statistics for numeric 77
reformatting 32

FIELDS=NONE, specifying on SUM statement 29
FILES parameter 42
FNAMES parameter 42
FNAMES parameter 49
 format

BI 4
CH 4
character string 26
character strings 34
data 4
decimal string 26
hexadecimal string 26
hexadecimal strings 34

 format (continued)
 PD 4
ZD 4

FORMAT parameter 14
formats for writing constants 26

H
HEADER2 parameter 50
HEADERn parameter 45

hexadecimal strings, format 34
high-speed DASD 67
Hiperspace 67

I
ICEDATA (sample job) 8
ICEDATA (sample job) 115
ICETOOL

complete sample job 98
continuing an operator statement 78
COPY operator 73, 84
COUNT operator 73
creating a job 75
DEFAULTS operator 73
definition 73
DISPLAY operator 73, 87, 88, 90, 93
examples 88, 90, 93, 96, 97

complete ICETOOL job 98
continuing an operator statement 78
counting values in a range 85
creating a job 75
creating different subsets 82
creating multiple sorted data sets 79
creating multiple unsorted data sets 84
printing simple reports 87
printing statistics for numeric fields 77
printing statistics for record lengths 79
TOOLMSG output 98
writing required JCL 75

JCL statements 75
job

elements 75
sample 98

MODE operator 73
OCCUR operator 73, 96
operator summary 73
printing

fields 87
record length 88
relative record number 88
statistics for numeric fields 77

printing field value occurrences 96
printing sectioned reports 93
printing tailored reports 88
RANGE operator 73, 85

128 Getting Started with DFSORT R14

ICETOOL (continued)
reports 45
requirements

input data sets 74
JCL 75

SELECT operator 73, 97
selecting records by field occurrences 97
SORT operator 73, 79, 82
statements

blank 76
comment 76
operator, continuing 78

STATS operator 74, 77, 79
symbols 108
TOOLMSG output, sample 98
UNIQUE operator 74
using formatting items 90
VERIFY operator 74

improving performance
allocating main storage 67
FASTSRT compile-time option 69
INCLUDE statement 68
 INREC statement 68
JCL (job control language) 69
OMIT statement 68
options to avoid 69
SKIPREC option 68
 SUM statement 68

improving performance
high-speed DASD 67
Hiperspace 67
STOPAFT option 68
using devices 67

INCLUDE parameter 43
INCLUDE statement

allowable comparisons 25
improving performance 68
using with INREC 38
writing 21

increasing speed
copying 21
merging 21
sorting 21

input data set
selecting 15
tailoring with OMIT 21

tailoring with INCLUDE 21
input data set

ICETOOL 74
INREC statement

considerations when used with other
statements 38

considerations when used with other
statements 38

deleting fields 31
differences between INREC and OUTREC proc-

essing 31

INREC statement (continued)
improving performance 68
 inserting separators 31
processing order 38
reformatting records 37
reordering fields 31

INREC statement
processing order flowchart 121

inserting with OUTREC
binary zeros 32

inserting with OUTREC
blanks 33
blanks or zeros 31
constants 34

installation defaults, overriding 65
ISCII data format code 4

J
JCL (job control language)

selecting output data sets 15
JCL (job control language)

executing a copy 20
executing a merge 18
executing a sort 15
general information 15
improving performance 69
selecting input data sets 15
statements 15

JCL (job control language)
calling DFSORT from a program 57, 60, 63
ICETOOL 75

JOB statement 15

L
LINES parameter 45, 49
logical record length 31

M
main storage, allocating 67
making multiple data set copies

FILES parameter 42
making multiple data set copies

FNAMES parameter 42
mapping

symbols 105
margins 33
MERGE statement

specifying with COPY 19
writing 17

MERGE statement, COBOL 57
merging records 16
MODE operator (ICETOOL) 73

 Index 129

multiple control fields 13
multiple data set copies, making

FNAMES parameter 42
multiple data set copies, making

FILES parameter 42

N
non-duplicate fields

OCCUR operator (ICETOOL) 73, 96
SELECT operator (ICETOOL) 73, 97
UNIQUE operator (ICETOOL) 74

notices vii

O
OCCUR operator (ICETOOL) 73, 96
occurrences

OCCUR operator (ICETOOL) 73, 96
SELECT operator (ICETOOL) 73, 97

OMIT parameter 43
OMIT statement

allowable comparisons 25
improving performance 68
using with INREC 38
writing 24

OPTION COPY 20
OPTION statement 19
OPTION statement 65
order of control statements 22
 ordering

ascending order 3
control statements 22
descending order 3
DFSORT defaults 7

OUTFIL
edit mask patterns 46
reports 45

OUTFIL reports
sample 54
using FNAMES parameter 49
using HEADER2 parameter 50
using LINES parameter 49
using OUTREC parameter 52
using TRAILER1 parameter 54

OUTFIL statement
creating a report 45
making multiple data set copies 42
making multiple output data sets with unique

content 43
parameters

 FNAMES 42
HEADER1 45
HEADER2 45
INCLUDE 43
LINES 45
OM IT 43

OUTFIL statement (continued)
parameters (continued)

OUTREC 45
TRAILER 1 45
TRAILER2 45

OUTFIL statement
making multiple data set copies 42
parameters

FILES 42
processing order flowchart 121
using 41, 56

output data set 15
 output records, reformatting 31
OUTREC parameter 45, 52
OUTREC statement

deleting fields 31
editing records 31
padding 31
setting up report format 35
using with INREC 38
using to

insert blanks 33
insert constants 34
insert binary zeros 33

writing 31
 OUTREC statement

deleting fields 31
differences between INREC and OUTREC proc-

essing 31
inserting separators 31
processing order flowchart 121
reordering fields 31

overflow
explanation 29
preventing 40

overriding installation defaults 65

P
packed decimal data 4
padding

 description 23
using INCLUDE 23
using OMIT 23
using OUTREC statement 31

PARM parameter 65
passing DFSORT statements

from a COBOL II program 63
from a COBOL program 57
from a PL/I program 57

PD format 4
PL/I

calling DFSORT 63
passing DFSORT statements 57
sample program 63

130 Getting Started with DFSORT R14

printing reports
DISPLAY operator (ICETOOL) 73, 87, 88, 90, 93

processing order
differences between INREC and OUTREC 31

processing order
flowchart 121
special considerations for INREC 38
special considerations for INREC 38

R
RANGE operator (ICETOOL) 73, 85
record length, changing 32
RECORD statement 63
records

considerations when reordering with INREC and
OUTREC 37

considerations when reordering with INREC and
OUTREC 38

 copying
definition 5
writing the COPY statement 19

merging
definition 4
using program control statements 16

reformatting with OUTREC 21
reordering with OUTREC 21
reordering and reformatting with OUTREC 32
selecting by occurrences 97
 sorting

ascending order 11
by multiple control fields 13
definition 3
descending order 12

writing the SORT statement 11
summing 27

reformatting records 31
reordering fields 32
reports 87, 88, 90, 93

DISPLAY operator (ICETOOL) 73, 90
division items (ICETOOL) 92
edit masks 90
ICETOOL 87
ICETOOL vs OUTFIL 45
leading, floating and trailing characters

(ICETOOL) 92
OUTFIL sample 54
OUTREC statement 35
printing field value occurrences 96
sectioned (ICETOOL) 93
simple (ICETOOL) 87
tailored (ICETOOL) 88
using OUTFIL 45

return code, DFSORT (COBOL) 58
running a DFSORT job 5

S
sample data set 8
sample data set

SORT.SAMPADD 118
SORT.SAMPIN 117

sample data set
SORT.BRANCH 115
SORT.SAMPIN 115
SORT.SAMPOUT 115
using 115

SELECT operator (ICETOOL) 73, 97
selecting input data sets 15
selecting output data sets 15
selecting records 21, 97
 SKIPREC option 68
SOR T.SAMPADD 8
SORT statement

specifying COPY 19
using with INREC 38

 writing 11
SORT operator (ICETOOL) 73, 79, 82
SORT statement, COBOL 57
SORT-CONTROL special register (COBOL) 58
SORT-RETURN special register (COBOL) 58
SORT.BRANCH 8, 115
SORT.SAMPADD 118
SORT.SAMPIN 8, 115, 117
SORT.SAMPOUT 8, 115
SORTCNTL DD statement 57

SORTIN DD statement 15
sorting records

ascending order 11
descending order 12
increasing speed 21
writing the SORT statement 11

sorting records
by multiple control fields 13
calling DFSORT from a program 57
FASTSRT option 63

SORTINnn DD statement 18
SORTOFn DD statement 42
SORTOUT DD statement

changing record length 32
general information 15

SORTWKdd DD statement 15, 67
SORTWKdd DD statement 18

specifying COPY
OPTION statement 19

 specifying COPY
MERGE statement 19
SORT statement 19

statistics, printing for numeric fields 77
STATS operator (ICETOOL) 74, 77
STEPLIB DD statement 15

 Index 131

STOPAFT option 68
SUM statement

FIELDS=NONE 29
improving performance 68
writing 27

SUM statement
using with INREC 38

summary fields 27
symbols

constants 109
control statement

example 107
DCOLLECT 105
definition 105
DFSMSrmm 105
fields 105
ICETOOL 108
RACF 105
SYMNAMES statement 105

SYMNAMES statement
symbols 105

SYSIN DD statement 15
SYSOUT DD statement 15

T
tailoring a data set

using INCLUDE 21
using OMIT 21

TRAILER1 parameter 54
TRAILERn parameter 45
truncation 23

U
UNIQUE operator (ICETOOL) 74
using the DFSORT sample data sets 115

V
VERIFY operator (ICETOOL) 74

W
work storage data sets

devices for efficient use 67
work storage data sets
number needed 15

Z
ZD format 4
zeros 33
zoned decimal data 4

132 Getting Started with DFSORT R14

Readers' Comments — We'd Like to Hear from You

DFSORT
Getting Started with DFSORT
 Release 14

Publication No. SC26-4109-08

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SC26-4109-08 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
RCF Processing Department
G26/M86 050
5600 Cottle Road
SAN JOSE, CA 95193-0001

Fold and Tape Please do not staple Fold and Tape

SC26-4109-08

 Index 135

IBM

Program Number: 5740-SM1

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC26-41ð9-ð8

